UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis

被引:90
作者
Schnurr, Judy A.
Storey, Kathleen K.
Jung, Hans-Joachim G.
Somers, David A.
Gronwald, John W. [1 ]
机构
[1] USDA ARS, Plant Sci Res Unit, St Paul, MN 55108 USA
[2] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA
关键词
Arabidopsis; intine; pollen; Quartet; UDP-sugar pyrophosphorylase; USP;
D O I
10.1007/s00425-006-0240-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis UDP-sugar pyrophosphorylase (AtUSP) is a broad substrate enzyme that synthesizes nucleotide sugars. The products of the AtUSP reaction can act as precursors for the synthesis of glycolipids, glycoproteins, and cell wall components including pectin and hemicellulose. AtUSP has no close homologs in Arabidopsis and its biological function has not been clearly defined. We identified two T-DNA insertional mutant lines for AtUSP, usp-1 and usp-2. No homozygous individuals were identified and progeny from plants heterozygous for usp-1 or usp-2 showed a 1:1 segregation ratio under selection. Despite decreased levels of both AtUSP transcript and USP activity (UDP-GlcA -> GlcA-1-P), heterozygous plants were indistinguishable from wild type at all stages of development. Reciprocal test crosses indicated the source of the segregation distortion was lack of transmission through the male gametophyte. Analysis of pollen tetrads from usp-1 in the quartet background revealed a 2:2 ratio of normal:collapsed pollen grains. The collapsed pollen grains were not viable as determined by Alexander's viability and DAPI staining, and pollen germination tests. The pollen phenotype of usp-1 was complemented by transformation of usp-1 with the AtUSP cDNA sequence. Surface and ultrastructural analyses of pollen from wild-type and usp mutants demonstrated that the mutation had no apparent effect on the outer wall (exine) but prevented the synthesis of the pectocellulosic inner wall (intine). Evidence presented here shows that AtUSP has a critical role in pollen development.
引用
收藏
页码:520 / 532
页数:13
相关论文
共 41 条
[1]   The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes [J].
Aarts, MGM ;
Hodge, R ;
Kalantidis, K ;
Florack, D ;
Wilson, ZA ;
Mulligan, BJ ;
Stiekema, WJ ;
Scott, R ;
Pereira, A .
PLANT JOURNAL, 1997, 12 (03) :615-623
[2]  
Ahmed A.E. L. R., 1978, J. Food Biochem, V1, P361, DOI [10.1111/j.1745-4514.1978.tb00193.x, DOI 10.1111/J.1745-4514.1978.TB00193.X]
[3]   A VERSATILE STAIN FOR POLLEN FUNGI, YEAST AND BACTERIA [J].
ALEXANDER, MP .
STAIN TECHNOLOGY, 1980, 55 (01) :13-18
[4]   DIFFERENTIAL STAINING OF ABORTED AND NONABORTED POLLEN [J].
ALEXANDER, MP .
STAIN TECHNOLOGY, 1969, 44 (03) :117-+
[5]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[6]  
[Anonymous], 1980, CARBOHYDRATES STRUCT, DOI DOI 10.1016/B978-0-12-675403-2.50010-7
[7]   Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana [J].
Ariizumi, T ;
Hatakeyama, K ;
Hinata, K ;
Inatsugi, R ;
Nishida, I ;
Sato, S ;
Kato, T ;
Tabata, S ;
Toriyama, K .
PLANT JOURNAL, 2004, 39 (02) :170-181
[8]   A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine [J].
Ariizumi, T ;
Hatakeyama, K ;
Hinata, K ;
Sato, S ;
Kato, T ;
Tabata, S ;
Toriyama, K .
PLANT MOLECULAR BIOLOGY, 2003, 53 (01) :107-116
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   ISOLATION OF URIDINE 5'-PYROPHOSPHATE GLUCURONIC ACID PYROPHOSPHORYLASE AND ITS ASSAY USING PYROPHOSPHATE-P-32 [J].
DICKINSON, DB ;
HYMAN, D ;
GONZALES, JW .
PLANT PHYSIOLOGY, 1977, 59 (06) :1082-1084