Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15

被引:288
作者
Han, Yi-Fan [1 ]
Chen, Fengxi [1 ]
Zhong, Ziyi [1 ]
Ramesh, Kanaparthi [1 ]
Chen, Luwei [1 ]
Widjaja, Effendi [1 ]
机构
[1] Inst Chem & Engn Sci, Singapore 627833, Singapore
关键词
D O I
10.1021/jp064941v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method established in the present study has proven to be effective in the synthesis of Mn2O3 nanocrystals by the thermolysis of manganese(III) acetyl acetonate ([CH3COCH=C(O)CH3](3)-Mn) and Mn3O4 nanocrystals by the thermolysis of manganese(II) acetyl acetonate ([CH3COCH=C(O)-CH3](2)Mn) on a mesoporous silica, SBA-15. In particular, Mn2O3 nanocrystals are the first to be reported to be synthesized on SBA-15. The structure, texture, and electronic properties of nanocomposites were studied using various characterization techniques such as N-2 physisorption, X-ray diffraction (XRD), laser Raman spectroscopy (LRS), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results of powder XRD at low angles show that the framework of SBA-15 remains unaffected after generation of the manganese oxide (MnOx) nanoparticles, whereas the pore volume and the surface area of SBA-15 dramatically decreased as indicated by N-2 adsorption-desorption. TEM images reveal that the pores of SBA-15 are progressively blocked with MnOx nanoparticles. The formation of the hausmannite Mn3O4 and bixbyite Mn2O3 structures was clearly confirmed by XRD. The surface structures of MnOx were also determined by LRS, XPS, and TPR. The crystalline phases of MnOx were identified by LRS with corresponding out-of-plane bending and symmetric stretching vibrations of bridging oxygen species (M-O-M) of both MnOx nanoparticles and bulk MnOx. We also observed the terminal Mn=O bonds corresponding to vibrations at 940 and 974 cm(-1) for Mn3O4/SBA-15 and Mn2O3/SBA-15, respectively. These results show that the MnOx species to be highly dispersed inside the channels of SBA-15. The nanostructure of the particles was further identified by the TPR profiles. Furthermore, the chemical states of the surface manganese (Mn) determined by XPS agreed well with the findings of LRS and XRD. These results suggest that the method developed in the present study resulted in the production of MnOx nanoparticles on mesoporous silica SBA-15 by controlling the crystalline phases precisely. The thus-prepared nanocomposites of MnOx showed significant catalytic activity toward CO oxidation below 523 K. In particular, the MnOx prepared from manganese acetyl acetonate showed a higher catalytic reactivity than that prepared from Mn(NO3)(2).
引用
收藏
页码:24450 / 24456
页数:7
相关论文
共 45 条
[1]   MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO(acac)2:: A detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx [J].
Baltes, M ;
Cassiers, K ;
Van Der Voort, P ;
Weckhuysen, BM ;
Schoonheydt, RA ;
Vansant, EF .
JOURNAL OF CATALYSIS, 2001, 197 (01) :160-171
[2]   ELECTROCHROMIC REACTIONS IN MANGANESE OXIDES .1. RAMAN ANALYSIS [J].
BERNARD, MC ;
GOFF, AHL ;
THI, BV ;
DETORRESI, SC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (11) :3065-3070
[3]   A review of porous manganese oxide materials [J].
Brock, SL ;
Duan, NG ;
Tian, ZR ;
Giraldo, O ;
Zhou, H ;
Suib, SL .
CHEMISTRY OF MATERIALS, 1998, 10 (10) :2619-2628
[4]   Vibrational spectroscopy of bulk and supported manganese oxides [J].
Buciuman, F ;
Patcas, F ;
Craciun, R ;
Zahn, DRT .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (01) :185-190
[5]   STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF THE PROTON GAMMA-MNO2 SYSTEM [J].
CHABRE, Y ;
PANNETIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (01) :1-130
[6]   A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts [J].
Chua, YT ;
Stair, PC ;
Wachs, IE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (36) :8600-8606
[7]  
de la Pena O'Shea V., 2004, APPL CATAL B-ENVIRON, V57, P191
[8]   XPS STUDY OF MNO OXIDATION [J].
DICASTRO, V ;
POLZONETTI, G .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1989, 48 (1-2) :117-123
[9]   MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane [J].
Döbber, D ;
Kiessling, D ;
Schmitz, W ;
Wendt, G .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 52 (02) :135-143
[10]   Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides [J].
Einaga, H ;
Futamura, S .
JOURNAL OF CATALYSIS, 2004, 227 (02) :304-312