First- and second-order sufficient optimality conditions for bang-bang controls

被引:30
作者
Sarychev, AV
机构
[1] Department of Mathematics, University of Aveiro, 3810, Aveiro
关键词
optimal control problem; Pontryagin maximum principle; bang-bang extremals; sufficient optimality conditions;
D O I
10.1137/S0363012993246191
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study L(1)-local optimality of a given control (u) over cap(.) in the time-optimal control problem for an affine control system. We start with the necessary optimality condition-the Pontryagin maximum principle, which selects the candidates for minimizers, the extremal controls. Generally the corresponding Pontryagin extremals consist of bang-bang and singular subarcs, separated by switching points. In the present paper we treat only pure bang-bang extremals. We introduce ex tended first and second variations along a bang-bang extremal and establish first- and second-order sufficient optimality conditions for the bang-bang extremal controls.
引用
收藏
页码:315 / 340
页数:26
相关论文
共 17 条
[1]   THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL-CALCULUS [J].
AGRACEV, AA ;
GAMKRELIDZE, RV .
MATHEMATICS OF THE USSR-SBORNIK, 1979, 35 (06) :727-785
[2]  
AGRACHEV AA, 1990, PURE A MATH, V133, P263
[3]   LOCAL INVARIANTS OF SMOOTH CONTROL-SYSTEMS [J].
AGRACHEV, AA ;
GAMKRELIDZE, RV ;
SARYCHEV, AV .
ACTA APPLICANDAE MATHEMATICAE, 1989, 14 (03) :191-237
[4]   A HIGH-ORDER TEST FOR OPTIMALITY OF BANG BANG CONTROLS [J].
BRESSAN, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (01) :38-48
[5]  
GAMKRELIDZE R, 1978, PRINCIPLES OPTIMAL C
[6]  
Goh B. S., 1966, SIAM J CONTROL, V4, P716, DOI DOI 10.1137/0304052
[7]  
Pontryagin L. S., 1986, The Mathematical Theory of Optimal Processes
[8]  
SARYCEV AV, 1982, MATH USSR SB, V41, P383
[9]  
SARYCHEV AV, 1992, LECT NOTES CONTR INF, V180, P440
[10]  
SARYCHEV AV, 1991, DIFF EQUAT+, V27, P539