Parametrizations of canonical bases and totally positive matrices

被引:187
作者
Berenstein, A
Fomin, S
Zelevinsky, A
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
[2] RUSSIAN ACAD SCI,ST PETERSBURG INST INFORMAT,THEORY ALGORITHMS LAB,ST PETERSBURG,RUSSIA
基金
美国国家科学基金会;
关键词
D O I
10.1006/aima.1996.0057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:49 / 149
页数:101
相关论文
共 37 条
[1]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[2]  
[Anonymous], PROGR MATH
[3]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[4]  
Baxter RJ., 1982, Exactly solved models in statistical mechanics
[5]   Canonical bases for the quantum group of type A(r) and piecewise-linear combinatorics [J].
Berenstein, A ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) :473-502
[6]  
Berenstein A., 1993, ADV SOVIET MATH, P51
[7]   SOME COMBINATORIAL PROPERTIES OF SCHUBERT POLYNOMIALS [J].
BILLEY, SC ;
JOCKUSCH, W ;
STANLEY, RP .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (04) :345-374
[8]  
Bourbaki N., 1968, Actualites Scientifiques et Industrielles, V1337
[9]  
BRENTI F, IN PRESS J COMBIN TH
[10]  
CARTER RW, 1994, 912 U WARW