A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome

被引:172
作者
Park, YJ
Dyer, PN
Tremethick, DJ
Luger, K [1 ]
机构
[1] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA
[2] Australian Natl Univ, John Curtin Sch Med Res, Chromatin & Transcript Regulat Grp, Canberra, ACT 2601, Australia
关键词
D O I
10.1074/jbc.M313152200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nucleosomes are highly dynamic macromolecular complexes that are assembled and disassembled in a modular fashion. One important way in which this dynamic process can be modulated is by the replacement of major histones with their variants, thereby affecting nucleosome structure and function. Here we use fluorescence resonance energy transfer between fluorophores attached to various defined locations within the nucleosome to dissect and compare the structural transitions of a H2A.Z containing and a canonical nucleosome in response to increasing ionic strength. We show that the peripheral regions of the DNA dissociate from the surface of the histone octamer at relatively low ionic strength, under conditions where the dimer-tetramer interaction remains unaffected. At around 550 mM NaCl, the (H2A-H2B) dimer dissociates from the (H3-H4)(2) tetramer-DNA complex. Significantly, this latter transition is stabilized in nucleosomes that have been reconstituted with the essential histone variant H2A.Z. Our studies firmly establish fluorescence resonance energy transfer as a valid method to study nucleosome stability, and shed new light on the biological function of H2A.Z.
引用
收藏
页码:24274 / 24282
页数:9
相关论文
共 53 条
[1]   Characterization of the stability and folding of H2A.Z chromatin particles -: Implications for transcriptional activation [J].
Abbott, DW ;
Ivanova, VS ;
Wang, XY ;
Bonner, WM ;
Ausió, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :41945-41949
[2]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[3]   Histone chaperones and nucleosome assembly [J].
Akey, CW ;
Luger, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (01) :6-14
[4]   Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (04) :979-987
[5]   The many tales of a tail:: Carboxyl-terminal tail heterogeneity specializes histone H2A variants for defined chromatin function [J].
Ausió, J ;
Abbott, DW .
BIOCHEMISTRY, 2002, 41 (19) :5945-5949
[6]   NUCLEOSOME CORE PARTICLE STABILITY AND CONFORMATIONAL CHANGE - EFFECT OF TEMPERATURE, PARTICLE AND NACL CONCENTRATIONS, AND CROSSLINKING OF HISTONE-H3 SULFHYDRYL-GROUPS [J].
AUSIO, J ;
SEGER, D ;
EISENBERG, H .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 176 (01) :77-104
[7]   EUKARYOTIC RNA POLYMERASE-II BINDS TO NUCLEOSOME CORES FROM TRANSCRIBED GENES [J].
BAER, BW ;
RHODES, D .
NATURE, 1983, 301 (5900) :482-488
[8]   FACT facilitates transcription-dependent nucleosome alteration [J].
Belotserkovskaya, R ;
Oh, S ;
Bondarenko, VA ;
Orphanides, G ;
Studitsky, VM ;
Reinberg, D .
SCIENCE, 2003, 301 (5636) :1090-1093
[9]   INTERACTION OF CORE HISTONES WITH DNA - EQUILIBRIUM BINDING STUDIES [J].
BURTON, DR ;
BUTLER, MJ ;
HYDE, JE ;
PHILLIPS, D ;
SKIDMORE, CJ ;
WALKER, IO .
NUCLEIC ACIDS RESEARCH, 1978, 5 (10) :3643-3663
[10]   INTERNAL ARCHITECTURE OF THE CORE NUCLEOSOME - FLUORESCENCE ENERGY-TRANSFER STUDIES AT METHIONINE-84 OF HISTONE-H4 [J].
CHUNG, DG ;
LEWIS, PN .
BIOCHEMISTRY, 1986, 25 (18) :5036-5042