Wavelet Bayesian block shrinkage via mixtures of normal-inverse gamma priors

被引:18
作者
De Canditiis, D
Vidakovic, B
机构
[1] Consiglio Nacl Ric M Picone, Ist Applicaz Calcolo M Picone, I-00161 Rome, Italy
[2] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; wavelet regression;
D O I
10.1198/1061860043461
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a nonlinear block shrinkage method in the wavelet domain for estimating an unknown function in the presence of Gaussian noise. This shrinkage uses an empirical Bayesian blocking approach that accounts for the sparseness of the representation of the unknown function. The modeling is accomplished by using a mixture of two normal-inverse gamma (NIG) distributions as a joint prior on wavelet coefficients and noise variance in each block at a particular resolution level. This method results in an explicit and readily implementable weighted sum of shrinkage rules. An automatic, level-dependent choice for the model hyperparameters, that leads to amplitude-scale invariant solutions, is also suggested. Finally, the performance of the proposed method, BBS (Bayesian block shrinkage), is illustrated on the battery of standard test functions and compared to some existing block-wavelet denoising methods.
引用
收藏
页码:383 / 398
页数:16
相关论文
共 34 条
[1]   Wavelet thresholding via a Bayesian approach [J].
Abramovich, F ;
Sapatinas, T ;
Silverman, BW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :725-749
[2]   Empirical Bayes approach to block wavelet function estimation [J].
Abramovich, F ;
Besbeas, P ;
Sapatinas, T .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (04) :435-451
[3]  
Angelini C, 2004, STAT SINICA, V14, P103
[4]  
ANONIADIS A, 1997, J ITALIAN STAT SOC, V6, P97
[5]  
Antoniadis A., 2001, J STAT SOFTW, V6, P1, DOI [10.18637/jss.v006.i06, DOI 10.18637/JSS.V006.I06]
[6]  
BUCKHEIT J, 1995, LECT NOTES STAT, V103, P53
[7]  
Cai T.T., 2011, Sankhya Ser. B, V63, P127
[8]  
Cai TT, 2002, STAT SINICA, V12, P1241
[9]   Adaptive wavelet estimation: A block thresholding and oracle inequality approach [J].
Cai, TT .
ANNALS OF STATISTICS, 1999, 27 (03) :898-924
[10]   Adaptive Bayesian wavelet shrinkage [J].
Chipman, HA ;
Kolaczyk, ED ;
McCullogh, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1413-1421