Non-Gaussian log-periodogram regression

被引:54
作者
Velasco, C [1 ]
机构
[1] Univ Carlos III Madrid, Dept Estadist & Econometria, Madrid 28903, Spain
[2] Univ London London Sch Econ & Polit Sci, London WC2A 2AE, England
关键词
D O I
10.1017/S0266466600161031
中图分类号
F [经济];
学科分类号
02 ;
摘要
We show the consistency of the log-periodogram regression estimate of the long memory parameter for long range dependent linear, not necessarily Gaussian, time series when we make a pooling of periodogram ordinates. Then, we study the asymptotic behavior of the tapered periodogram of long range dependent time series for frequencies near the origin, and we obtain the asymptotic distribution of the log-periodogram estimate for possibly non-Gaussian observation when the tapered periodogram is used. For these results we rely on higher order asymptotic properties of a vector of periodogram ordinates of the linear innovations. Finally, we assess the validity of the asymptotic results for finite samples via Monte Carlo simulation.
引用
收藏
页码:44 / 79
页数:36
相关论文
共 31 条
[1]  
[Anonymous], ADV EC 6 WORLD C
[2]  
Beran J, 1994, STAT LONG MEMORY PRO
[3]  
Bhattacharya RN., 1976, NORMAL APPROXIMATION
[4]  
Bloomfield Paul., 2014, The Virtues of Happiness: A Theory of the Good Life, DOI DOI 10.1093/ACPROF:OSO/9780199827367.001.0001
[5]  
Chen Zhao-Guo, 1980, Journal of Time Series Analysis, V1, P73, DOI 10.1111/j.1467-9892.1980.tb00301.x
[6]  
COMTE F, 1995, REGRESSION LOG REGUL
[8]   EFFICIENT PARAMETER-ESTIMATION FOR SELF-SIMILAR PROCESSES [J].
DAHLHAUS, R .
ANNALS OF STATISTICS, 1989, 17 (04) :1749-1766
[9]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[10]  
FIRAITIS L, 1997, J TIME SER ANAL, V18, P49