Redox regulation of the hypoxia-inducible factor

被引:156
作者
Pouyssegur, Jacques
Mechta-Grigoriou, Fatima
机构
[1] Inst Curie, U528, INSERM, Unit Stress & Canc, F-75248 Paris 05, France
[2] Inst Signaling Dev Biol & Canc Res, CNRS, UMR 6543, Ctr A Lacassagne, F-06189 Nice, France
关键词
cancer; hypoxia-inducible factor (HIF); metabolism; oxygen sensing; prolyl hydroxylase domain (PHD); ROS; stress;
D O I
10.1515/BC.2006.167
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species (ROS) have long been considered only as cyto- and genotoxic. However, there is now compelling evidence that ROS also act as second messengers in response to various stimuli, such as growth factors, hormones and cytokines. The hypoxia-inducible transcription factor (HIF) is a master regulator of oxygen-sensitive gene expression. More recently, HIF has also been shown to respond to non-hypoxic stimuli. Interestingly, recent reports indicate that ROS regulate HIF stability and transcriptional activity in well-oxygenated cells, as well as under hypoxic conditions. Consequently, ROS appear to be key players in regulating HIF-dependent pathways under both normal and pathological circumstances. This review summarizes the current understanding of the role of ROS in the regulation of the mammalian HIF system.
引用
收藏
页码:1337 / 1346
页数:10
相关论文
共 138 条
[1]  
Aebersold DM, 2001, CANCER RES, V61, P2911
[2]   Role of nitric oxide in the regulation of HIF-1α expression during hypoxia [J].
Agani, FH ;
Puchowicz, M ;
Chavez, JC ;
Pichiule, P ;
LaManna, J .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (01) :C178-C186
[3]   The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia [J].
Agani, FH ;
Pichiule, P ;
Chavez, JC ;
LaManna, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35863-35867
[4]   Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2α [J].
Akeno, N ;
Robins, J ;
Zhang, M ;
Czyzyk-Krzeska, MF ;
Clemens, TL .
ENDOCRINOLOGY, 2002, 143 (02) :420-425
[5]   Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor [J].
Appelhoff, RJ ;
Tian, YM ;
Raval, RR ;
Turley, H ;
Harris, AL ;
Pugh, CW ;
Ratcliffe, PJ ;
Gleadle, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38458-38465
[6]   Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors [J].
Aprelikova, O ;
Chandramouli, GVR ;
Wood, M ;
Vasselli, JR ;
Riss, J ;
Maranchie, JK ;
Linehan, WM ;
Barrett, JC .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 92 (03) :491-501
[7]   Reactive oxygen generated by Nox1 triggers the angiogenic switch [J].
Arbiser, JL ;
Petros, J ;
Klafter, R ;
Govindajaran, B ;
McLaughlin, ER ;
Brown, LF ;
Cohen, C ;
Moses, M ;
Kilroy, S ;
Arnold, RS ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :715-720
[8]   NADPH oxidase [J].
Babior, BM .
CURRENT OPINION IN IMMUNOLOGY, 2004, 16 (01) :42-47
[9]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[10]  
Blancher C, 2001, CANCER RES, V61, P7349