Pade approximation for the exponential of a block triangular matrix

被引:40
作者
Dieci, L [1 ]
Papini, A
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Florence, Dipartimento Energet S Stecco, I-50134 Florence, Italy
基金
美国国家科学基金会;
关键词
exponential; scaling and squaring; Pade approximation;
D O I
10.1016/S0024-3795(00)00042-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we obtain improved error bounds for Pade approximations to e(A) when A is block triangular. As a result, improved scaling strategies ensue which avoid some common overscaling difficulties. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:183 / 202
页数:20
相关论文
共 15 条
[1]   The Pade method for computing the matrix exponential [J].
Arioli, M ;
Codenotti, B ;
Fassino, C .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 240 (240) :111-130
[2]   NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS ON MANIFOLDS [J].
CROUCH, PE ;
GROSSMAN, R .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) :1-33
[3]   Conditioning and Pade approximation of the logarithm of a matrix [J].
Dieci, L ;
Papini, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) :913-930
[4]   PADE APPROXIMATIONS TO OPERATOR EXPONENTIAL [J].
FAIR, W ;
LUKE, YL .
NUMERISCHE MATHEMATIK, 1970, 14 (04) :379-&
[5]  
Golub G. H., 2013, Matrix Computations
[6]  
HAIRER E, 1991, SOLVING ORDINARY D 2
[7]   PERTURBATION-THEORY AND BACKWARD ERROR FOR AX-XB=C [J].
HIGHAM, NJ .
BIT NUMERICAL MATHEMATICS, 1993, 33 (01) :124-136
[8]   Exponential integrators for large systems of differential equations [J].
Hochbruck, M ;
Lubich, C ;
Selhofer, H .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1552-1574
[9]   On Krylov subspace approximations to the matrix exponential operator [J].
Hochbruck, M ;
Lubich, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1911-1925
[10]  
Kagstrom B., 1977, BIT (Nordisk Tidskrift for Informationsbehandling), V17, P39, DOI 10.1007/BF01932398