Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites

被引:193
作者
Clancy, Thomas C.
Gates, Thomas S.
机构
[1] Natl Inst Aerosp, Hampton, VA 23666 USA
[2] NASA, Langley Res Ctr, Mech Struct & Mat Branch, Hampton, VA 23681 USA
关键词
nanocomposite; simulation; polymers;
D O I
10.1016/j.polymer.2006.05.062
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5990 / 5996
页数:7
相关论文
共 17 条
[1]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[3]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[4]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[5]   Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites [J].
Gojny, FH ;
Wichmann, MHG ;
Fiedler, B ;
Kinloch, IA ;
Bauhofer, W ;
Windle, AH ;
Schulte, K .
POLYMER, 2006, 47 (06) :2036-2045
[6]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734
[7]   DERIVATION OF CLASS-II FORCE-FIELDS .2. DERIVATION AND CHARACTERIZATION OF A CLASS-II FORCE-FIELD, CFF93, FOR THE ALKYL FUNCTIONAL-GROUP AND ALKANE MOLECULES [J].
HWANG, MJ ;
STOCKFISCH, TP ;
HAGLER, AT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (06) :2515-2525
[8]  
Kingseed W, 2000, AM HIST, V34, P24
[9]   Interface effect on thermal conductivity of carbon nanotube composites [J].
Nan, CW ;
Liu, G ;
Lin, YH ;
Li, M .
APPLIED PHYSICS LETTERS, 2004, 85 (16) :3549-3551
[10]   Effective thermal conductivity of particulate composites with interfacial thermal resistance [J].
Nan, CW ;
Birringer, R ;
Clarke, DR ;
Gleiter, H .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (10) :6692-6699