The Newton-arithmetic mean method for the solution of systems of nonlinear equations

被引:19
作者
Galligani, E [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Matemat & Applicata G Vitali, I-41100 Modena, Italy
关键词
nonlinear systems; Newton-iterative method; arithmetic mean method; affine invariant; weakly nonlinear systems;
D O I
10.1016/S0096-3003(01)00265-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the development of the Newton-arithmetic mean method for large systems of nonlinear equations with block-partitioned Jacobian matrix. This method is well suited for implementation on a parallel computer; its degree of decomposition is very high. The convergence of the method is analysed for the class of systems whose Jacobian matrix satisfies an affine invariant Lipschitz condition. An estimation of the radius of the attraction ball is given. Special attention is reserved to the case of weakly nonlinear systems. A numerical example highlights some peculiar properties of the method. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:9 / 34
页数:26
相关论文
共 33 条
[1]  
[Anonymous], NUMERICAL SOLUTION S
[2]  
[Anonymous], P AM SOC
[3]  
Dekker K, 1984, STABILITY RUNGE KUTT
[4]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[5]   ON STEPLENGTH ALGORITHMS FOR A CLASS OF CONTINUATION METHODS [J].
DENHEIJER, C ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (05) :925-948
[6]  
Dennis, 1996, NUMERICAL METHODS UN
[7]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1
[8]   MEASURE OF A MATRIX AS A TOOL TO ANALYZE COMPUTER ALGORITHMS FOR CIRCUIT ANALYSIS [J].
DESOER, CA ;
HANEDA, H .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (05) :480-&
[9]   AFFINE INVARIANT CONVERGENCE THEOREMS FOR NEWTONS METHOD AND EXTENSIONS TO RELATED METHODS [J].
DEUFLHARD, P ;
HEINDL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :1-10
[10]   ASYMPTOTIC MESH INDEPENDENCE OF NEWTON-GALERKIN METHODS VIA A REFINED MYSOVSKII THEOREM [J].
DEUFLHARD, P ;
POTRA, FA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (05) :1395-1412