Entropy and information in neural spike trains: Progress on the sampling problem

被引:173
作者
Nemenman, I [1 ]
Bialek, W
van Steveninck, RD
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevE.69.056111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The major problem in information theoretic analysis of neural responses and other biological data is the reliable estimation of entropy-like quantities from small samples. We apply a recently introduced Bayesian entropy estimator to synthetic data inspired by experiments, and to real experimental spike trains. The estimator performs admirably even very deep in the undersampled regime, where other techniques fail. This opens new possibilities for the information theoretic analysis of experiments, and may be of general interest as an example of learning from limited data.
引用
收藏
页数:6
相关论文
共 34 条
[1]  
[Anonymous], P S MECH THOUGHT PRO
[2]  
Barlow H. B., 1961, SENS COMMUN, P217, DOI DOI 10.7551/MITPRESS/9780262518420.003.0013
[3]  
BATU T, 2002, P 34 S THEOR COMP AC, P46620
[4]   The structure and precision of retinal spike trains [J].
Berry, MJ ;
Warland, DK ;
Meister, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5411-5416
[5]   Predictability, complexity, and learning [J].
Bialek, W ;
Nemenman, I ;
Tishby, N .
NEURAL COMPUTATION, 2001, 13 (11) :2409-2463
[6]   READING A NEURAL CODE [J].
BIALEK, W ;
RIEKE, F ;
VANSTEVENINCK, RRD ;
WARLAND, D .
SCIENCE, 1991, 252 (5014) :1854-1857
[7]   Information theory and neural coding [J].
Borst, A ;
Theunissen, FE .
NATURE NEUROSCIENCE, 1999, 2 (11) :947-957
[8]   Adaptive rescaling maximizes information transmission [J].
Brenner, N ;
Bialek, W ;
van Steveninck, RD .
NEURON, 2000, 26 (03) :695-702
[9]   Synergy in a neural code [J].
Brenner, N ;
Strong, SP ;
Koberle, R ;
Bialek, W ;
van Steveninck, RRD .
NEURAL COMPUTATION, 2000, 12 (07) :1531-1552
[10]   INFORMATION-THEORETIC ASYMPTOTICS OF BAYES METHODS [J].
CLARKE, BS ;
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :453-471