Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters

被引:88
作者
Ponjavic, Jasmina
Lenhard, Boris
Kai, Chikatoshi
Kawai, Jun
Carninci, Piero
Hayashizaki, Yoshihide
Sandelin, Albin [1 ]
机构
[1] RIKEN, Yokohama Inst, GSC, Genome Network Project Core Grp,Genome Explorat R, Yokohama, Kanagawa 2300045, Japan
[2] Univ Oxford, Dept Physiol Anat & Genet, MRC, Funct Genet Inst, Oxford OX1 3QX, England
[3] Univ Bergen, HIB, Bergen Ctr Computat Sci, Computat Biol Unit, N-5008 Bergen, Norway
[4] RIKEN, Wako Inst, Discovery & Res Inst, Genome Sci Lab, Wako, Saitama 3510198, Japan
基金
英国医学研究理事会;
关键词
D O I
10.1186/gb-2006-7-8-r78
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The TATA box, one of the most well studied core promoter elements, is associated with induced, context-specific expression. The lack of precise transcription start site (TSS) locations linked with expression information has impeded genome-wide characterization of the interaction between TATA and the pre-initiation complex. Results: Using a comprehensive set of 5.66 x 10(6) sequenced 5' cDNA ends from diverse tissues mapped to the mouse genome, we found that the TATA-TSS distance is correlated with the tissue specificity of the downstream transcript. To achieve tissue-specific regulation, the TATA box position relative to the TSS is constrained to a narrow window (-32 to -29), where positions -31 and -30 are the optimal positions for achieving high tissue specificity. Slightly larger spacings can be accommodated only when there is no optimally spaced initiation signal; in contrast, the TATA box like motifs found downstream of position -28 are generally nonfunctional. The strength of the TATA binding protein-DNA interaction plays a subordinate role to spacing in terms of tissue specificity. Furthermore, promoters with different TATA-TSS spacings have distinct features in terms of consensus sequence around the initiation site and distribution of alternative TSSs. Unexpectedly, promoters that have two dominant, consecutive TSSs are TATA depleted and have a novel GGG initiation site consensus. Conclusion: In this report we present the most comprehensive characterization of TATA-TSS spacing and functionality to date. The coupling of spacing to tissue specificity at the transcriptome level provides important clues as to the function of core promoters and the choice of TSS by the pre-initiation complex.
引用
收藏
页数:18
相关论文
共 59 条
[1]   SELECTION OF DNA-BINDING SITES BY REGULATORY PROTEINS - STATISTICAL-MECHANICAL THEORY AND APPLICATION TO OPERATORS AND PROMOTERS [J].
BERG, OG ;
VONHIPPEL, PH .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 193 (04) :723-743
[2]   WEIGHT MATRIX DESCRIPTIONS OF 4 EUKARYOTIC RNA POLYMERASE-II PROMOTER ELEMENTS DERIVED FROM 502 UNRELATED PROMOTER SEQUENCES [J].
BUCHER, P .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 212 (04) :563-578
[3]   The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAF(II)60 of Drosophila [J].
Burke, TW ;
Kadonaga, JT .
GENES & DEVELOPMENT, 1997, 11 (22) :3020-3031
[4]   Structural basis of transcription: An RNA polymerase II-TFIIB cocrystal at 4.5 angstroms [J].
Bushnell, DA ;
Westover, KD ;
Davis, RE ;
Kornberg, RD .
SCIENCE, 2004, 303 (5660) :983-988
[5]   The RNA polymerase II core promoter: a key component in the regulation of gene expression [J].
Butler, JEF ;
Kadonaga, JT .
GENES & DEVELOPMENT, 2002, 16 (20) :2583-2592
[6]   The transcriptional landscape of the mammalian genome [J].
Carninci, P ;
Kasukawa, T ;
Katayama, S ;
Gough, J ;
Frith, MC ;
Maeda, N ;
Oyama, R ;
Ravasi, T ;
Lenhard, B ;
Wells, C ;
Kodzius, R ;
Shimokawa, K ;
Bajic, VB ;
Brenner, SE ;
Batalov, S ;
Forrest, ARR ;
Zavolan, M ;
Davis, MJ ;
Wilming, LG ;
Aidinis, V ;
Allen, JE ;
Ambesi-Impiombato, X ;
Apweiler, R ;
Aturaliya, RN ;
Bailey, TL ;
Bansal, M ;
Baxter, L ;
Beisel, KW ;
Bersano, T ;
Bono, H ;
Chalk, AM ;
Chiu, KP ;
Choudhary, V ;
Christoffels, A ;
Clutterbuck, DR ;
Crowe, ML ;
Dalla, E ;
Dalrymple, BP ;
de Bono, B ;
Della Gatta, G ;
di Bernardo, D ;
Down, T ;
Engstrom, P ;
Fagiolini, M ;
Faulkner, G ;
Fletcher, CF ;
Fukushima, T ;
Furuno, M ;
Futaki, S ;
Gariboldi, M .
SCIENCE, 2005, 309 (5740) :1559-1563
[7]   Genome-wide analysis of mammalian promoter architecture and evolution [J].
Carninci, Piero ;
Sandelin, Albin ;
Lenhard, Boris ;
Katayama, Shintaro ;
Shimokawa, Kazuro ;
Ponjavic, Jasmina ;
Semple, Colin A. M. ;
Taylor, Martin S. ;
Engström, Par G. ;
Frith, Martin C. ;
Forrest, Alistair R. R. ;
Alkema, Wynand B. ;
Tan, Sin Lam ;
Plessy, Charles ;
Kodzius, Rimantas ;
Ravasi, Timothy ;
Kasukawa, Takeya ;
Fukuda, Shiro ;
Kanamori-Katayama, Mutsumi ;
Kitazume, Yayoi ;
Kawaji, Hideya ;
Kai, Chikatoshi ;
Nakamura, Mari ;
Konno, Hideaki ;
Nakano, Kenji ;
Mottagui-Tabar, Salim ;
Arner, Peter ;
Chesi, Alessandra ;
Gustincich, Stefano ;
Persichetti, Francesca ;
Suzuki, Harukazu ;
Grimmond, Sean M. ;
Wells, Christine A. ;
Orlando, Valerio ;
Wahlestedt, Claes ;
Liu, Edison T. ;
Harbers, Matthias ;
Kawai, Jun ;
Bajic, Vladimir B. ;
Hume, David A. ;
Hayashizaki, Yoshihide .
NATURE GENETICS, 2006, 38 (06) :626-635
[8]  
Cover TM, 2006, Elements of Information Theory
[9]  
DURBIN R, 1999, BIOL SEQUENCE ANAL
[10]   Profile hidden Markov models [J].
Eddy, SR .
BIOINFORMATICS, 1998, 14 (09) :755-763