Gene regulation in Lactococcus lactis:: the gap between predicted and characterized regulators

被引:28
作者
Guédon, E [1 ]
Jamet, E [1 ]
Renault, P [1 ]
机构
[1] INRA, Genet Microbienne, F-78352 Jouy En Josas, France
来源
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY | 2002年 / 82卷 / 1-4期
关键词
transcriptional control; gene expression; gene regulation; regulatory network; lactic acid bacteria;
D O I
10.1023/A:1020680926267
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The genome sequence of Lactococcus lactis IL1403 was previously determined with high quality, allowing a reliable determination of the potential ORFs present in the genome. It encodes 2310 proteins, and 138 of them were assigned as potential regulators, half of which being further classified by their similarity to known protein families. Among these regulators, most could have a direct role as transcriptional regulators, while the others may have less well defined functions in transcriptional regulation or more general functions, such as the GTP binding protein family. Current knowledge related to the regulators controlling gene expression in L. lactis will be confronted to data obtained in other bacteria. For example, comparison of the L. lactis regulators with those of B. subtilis reveals many orthologous regulators and also some clear differences in the type of regulator used in the two bacteria. Further comparison of the role and the effectors of orthologous regulators shows that direct transposition of a 'heterologous model' does not allow to build a reliable regulatory network in L. lactis. Moreover, many L. lactis regulators have functions that could not be proposed by transposition of the knowledge currently available in other bacteria. A considerable amount of work will be necessary to assess the function of L. lactis regulators and build a comprehensive model of the regulatory network. This would provide invaluable information on L. lactis biology and the way this bacterium interacts with the environment.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 124 条
[1]   Regulation of carbon catabolism in Lactococcus lactis. [J].
Aleksandrzak, T ;
Kowalczyk, M ;
Kok, J ;
Bardowski, J .
FOOD BIOTECHNOLOGY, 2000, 17 :61-66
[2]   CLONING, SEQUENCE AND EXPRESSION OF THE GENE ENCODING THE MALOLACTIC ENZYME FROM LACTOCOCCUS-LACTIS [J].
ANSANAY, V ;
DEQUIN, S ;
BLONDIN, B ;
BARRE, P .
FEBS LETTERS, 1993, 332 (1-2) :74-80
[3]   Escherichia coli CspA-family RNA chaperones are transcription antiterminators [J].
Bae, WH ;
Xia, B ;
Inouye, M ;
Severinov, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :7784-7789
[4]   Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein [J].
Bae, WH ;
Phadtare, S ;
Severinov, K ;
Inouye, M .
MOLECULAR MICROBIOLOGY, 1999, 31 (05) :1429-1441
[5]   BGLR PROTEIN, WHICH BELONGS TO THE BGLG FAMILY OF TRANSCRIPTIONAL ANTITERMINATORS, IS INVOLVED IN BETA-GLUCOSIDE UTILIZATION IN LACTOCOCCUS-LACTIS [J].
BARDOWSKI, J ;
EHRLICH, SD ;
CHOPIN, A .
JOURNAL OF BACTERIOLOGY, 1994, 176 (18) :5681-5685
[6]   Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome [J].
Bolotin, A ;
Mauger, S ;
Malarme, K ;
Ehrlich, SD ;
Sorokin, A .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1999, 76 (1-4) :27-76
[7]   The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403 [J].
Bolotin, A ;
Wincker, P ;
Mauger, S ;
Jaillon, O ;
Malarme, K ;
Weissenbach, J ;
Ehrlich, SD ;
Sorokin, A .
GENOME RESEARCH, 2001, 11 (05) :731-753
[8]   Bacillus subtilis contains multiple Fur homologues:: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors [J].
Bsat, N ;
Herbig, A ;
Casillas-Martinez, L ;
Setlow, P ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 1998, 29 (01) :189-198
[9]   REGULATION OF THE ESCHERICHIA-COLI HEAT-SHOCK RESPONSE [J].
BUKAU, B .
MOLECULAR MICROBIOLOGY, 1993, 9 (04) :671-680
[10]  
CASHEL M, 1996, CELLULAR MOL BIOL, V1, P14580