Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds

被引:230
作者
Hrapovic, Sabahudin [1 ]
Majid, Ehsan [1 ]
Liu, Yali [1 ]
Male, Keith [1 ]
Luong, John H. T. [1 ]
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
关键词
D O I
10.1021/ac060435q
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Metal nanoparticles (Pt, Au, or Cu) together with multi-walled and single-walled carbon nanotubes (MWCNT and SWCNT) solubilized in Nafion have been used to form nanocomposites for electrochemical detection of trinitrotoluene (TNT) and several other nitroaromatics. Electrochemical and surface characterization by cyclic voltammetry, AFM, TEM, SEM, and Raman spectroscopy confirmed the presence of metal nanoparticles on CNTs. Among various combinations tested, the most synergistic signal effect was observed for the nanocomposite modified glassy carbon electrode (GC) containing Cu nanoparticles and SWCNT solubilized in Nafion. This combination provided the best sensitivity for detecting TNT and other nitroaromatic compounds. Adsorptive stripping voltammetry for TNT resulted in a detection limit of 1 ppb, with linearity up to 3 orders of magnitude. Selectivity toward the number and position of the nitro groups in different nitroaromatics was very reproducible and distinct. Reproducibility of the TNT signal was within 7% (n = 8) from one electrode preparation to another, and the response signal was stable (+/-3.8% at 95% confidence interval) for 40 repeated analyses with 10 min of preconditioning. The Cu-SWCNT-modified GC electrode was demonstrated for analysis of TNT in tap water, river water, and contaminated soil.
引用
收藏
页码:5504 / 5512
页数:9
相关论文
共 76 条
[1]   Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion® [J].
Antoine, O ;
Bultel, Y ;
Durand, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :85-94
[2]   Bioelectrochemical single-walled carbon nanotubes [J].
Azamian, BR ;
Davis, JJ ;
Coleman, KS ;
Bagshaw, CB ;
Green, MLH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) :12664-12665
[3]  
Bard A. J., 2000, ELECTROCHEMICAL METH
[4]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[5]   Enzyme-coated carbon nanotubes as single-molecule biosensors [J].
Besteman, K ;
Lee, JO ;
Wiertz, FGM ;
Heering, HA ;
Dekker, C .
NANO LETTERS, 2003, 3 (06) :727-730
[6]   Redox-modulated recognition of flavin by functionalized gold nanoparticles [J].
Boal, AK ;
Rotello, VM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (20) :4914-4915
[7]   Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J].
Brown, KR ;
Fox, AP ;
Natan, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (05) :1154-1157
[8]   Colloidal gold supported onto glassy carbon substrates as an amperometric sensor for carbohydrates in flow injection and liquid chromatography [J].
Casella, IG ;
Destradis, A ;
Desimoni, E .
ANALYST, 1996, 121 (02) :249-254
[9]   Highly-dispersed copper microparticles on the active gold substrate as an amperometric sensor for glucose [J].
Casella, IG ;
Gatta, M ;
Guascito, MR ;
Cataldi, TRI .
ANALYTICA CHIMICA ACTA, 1997, 357 (1-2) :63-71
[10]  
Celej MS, 1998, ELECTROANAL, V10, P771, DOI 10.1002/(SICI)1521-4109(199809)10:11<771::AID-ELAN771>3.0.CO