On scaling in relation to singular spectra

被引:17
作者
Hof, A
机构
[1] Div. of Phys., Math. and Astronomy, California Inst. of Technol. 253-37, Pasadena
关键词
D O I
10.1007/s002200050073
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper relates uniform alpha-Holder continuity, or alpha-dimensionality, of spectral measures in an arbitrary interval to the Fourier transform of the measure. This is used to show that scaling exponents of exponential sums obtained from time series give local upper bounds on the degree of Holder continuity of the power spectrum of the series. The results have applications to generalized random walk, numerical detection of singular continuous spectra and to the energy growth in driven oscillators.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 37 条
[1]  
AARONSON J, 1982, P LOND MATH SOC, V44, P535
[2]  
[Anonymous], DIFFERENTIAL EQUATIO
[3]   SCALING PROPERTIES OF A STRUCTURE INTERMEDIATE BETWEEN QUASIPERIODIC AND RANDOM [J].
AUBRY, S ;
GODRECHE, C ;
LUCK, JM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) :1033-1075
[4]   A STRUCTURE INTERMEDIATE BETWEEN QUASI-PERIODIC AND RANDOM [J].
AUBRY, S ;
GODRECHE, C ;
LUCK, JM .
EUROPHYSICS LETTERS, 1987, 4 (06) :639-643
[5]  
BARBAROUX JM, CPT96P3303
[6]   RECURRENCE AND TRANSIENCE FOR RANDOM-WALKS WITH STATIONARY INCREMENTS [J].
BERBEE, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (04) :531-536
[7]   DIFFUSIVE ENERGY GROWTH IN CLASSICAL AND QUANTUM DRIVEN OSCILLATORS [J].
BUNIMOVICH, L ;
JAUSLIN, HR ;
LEBOWITZ, JL ;
PELLEGRINOTTI, A ;
NIELABA, P .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :793-817
[8]  
COMBESCURE M, 1992, ANN I H POINCARE-PHY, V57, P67
[9]  
CORNFELD IP, 1982, GRUNDLEHREN MATH WIS, V115
[10]  
DEKKING FM, 1981, J REINE ANGEW MATH, V329, P143