MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS

被引:7116
作者
Koren, Yehuda [1 ]
Bell, Robert [1 ]
Volinsky, Chris [1 ]
机构
[1] Yahoo Res, Haifa, Israel
关键词
D O I
10.1109/MC.2009.263
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest-neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit levels. © 2009, IEEE. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 12 条
  • [1] [Anonymous], 2009, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, DOI DOI 10.1145/1557019.1557072
  • [2] [Anonymous], 2007, KDD CUP WORKSH
  • [3] [Anonymous], 2007, SIGKDD Explorations, DOI DOI 10.1145/1345448.134546
  • [4] BELLIVEAU PP, 2007, PHARM EDUC, V7, P43, DOI DOI 10.1080/15602210601084531
  • [5] Funk Simon, 2006, NETFLIX UPDATE TRY T
  • [6] USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY
    GOLDBERG, D
    NICHOLS, D
    OKI, BM
    TERRY, D
    [J]. COMMUNICATIONS OF THE ACM, 1992, 35 (12) : 61 - 70
  • [7] Collaborative Filtering for Implicit Feedback Datasets
    Hu, Yifan
    Koren, Yehuda
    Volinsky, Chris
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 263 - +
  • [8] Koren Yehuda, 2008, PROC 14 ACM SIGKDD I, P426
  • [9] Mnih A., 2008, Advances in Neural Information Processing Systems
  • [10] Paterek A., 2007, P KDD CUP WORKSH4, P5, DOI [DOI 10.1145/1557019.1557072, DOI 10.1137/1.9781611972757.43]