Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction

被引:109
作者
Attia, Zachi I. [1 ]
Kapa, Suraj [1 ]
Yao, Xiaoxi [2 ,3 ]
Lopez-Jimenez, Francisco [1 ]
Mohan, Tarun L. [1 ]
Pellikka, Patricia A. [1 ]
Carter, Rickey E. [4 ]
Shah, Nilay D. [2 ,3 ]
Friedman, Paul A. [1 ]
Noseworthy, Peter A. [1 ,3 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
[2] Mayo Clin, Dept Hlth Sci Res, Div Hlth Care Policy & Res, Rochester, MN USA
[3] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN USA
[4] Mayo Clin, Div Biomed Stat & Informat, Hlth Sci Res, Coll Med, Jacksonville, FL 32224 USA
基金
美国医疗保健研究与质量局; 美国国家卫生研究院; 美国国家科学基金会;
关键词
artificial intelligence; deep learning; electrocardiogram; echocardiography; ejection fraction; MYOCARDIAL-INFARCTION; ASSOCIATION; MANAGEMENT;
D O I
10.1111/jce.13889
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12-lead electrocardiogram (ECG) in a large prospective cohort. Background Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging. Methods We applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new "positive screens." Results Among 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 +/- 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 "false-positives screens," 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT-pro-BNP after the initial "positive screen." Conclusions A deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.
引用
收藏
页码:668 / 674
页数:7
相关论文
共 16 条
[1]  
Al-Khatib SM, 2018, CIRCULATION, V138, pE210, DOI [10.1161/CIR.0000000000000548, 10.1161/CIR.0000000000000549]
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]  
Cristianini N., 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, DOI DOI 10.1017/CBO9780511801389
[4]   Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial [J].
Dargie, HJ ;
Colucci, Y ;
Ford, I ;
Sendon, JLL ;
Remme, W ;
Sharpe, N ;
Blank, A ;
Holcslaw, TL .
LANCET, 2001, 357 (9266) :1385-1390
[5]  
Ioffe S, 2015, 32 INT C MACH LEARN
[6]   Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J].
Lang, Roberto M. ;
Badano, Luigi P. ;
Mor-Avi, Victor ;
Afilalo, Jonathan ;
Armstrong, Anderson ;
Ernande, Laura ;
Flachskampf, Frank A. ;
Foster, Elyse ;
Goldstein, Steven A. ;
Kuznetsova, Tatiana ;
Lancellotti, Patrizio ;
Muraru, Denisa ;
Picard, Michael H. ;
Rietzschel, Ernst R. ;
Rudski, Lawrence ;
Spencer, Kirk T. ;
Tsang, Wendy ;
Voigt, Jens-Uwe .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (03) :233-271
[7]  
McDonagh Theresa A, 2008, Congest Heart Fail, V14, P5
[8]  
Nagi J., 2011, 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA 2011), P342, DOI 10.1109/ICSIPA.2011.6144164
[9]   Electrocardiographic Predictors of Heart Failure With Reduced Versus Preserved Ejection Fraction: The Multi-Ethnic Study of Atherosclerosis [J].
O'Neal, Wesley T. ;
Mazur, Matylda ;
Bertoni, Alain G. ;
Bluemke, David A. ;
Al-Mallah, Mouaz H. ;
Lima, Joao A. C. ;
Kitzman, Dalane ;
Soliman, Elsayed Z. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2017, 6 (06)
[10]   EFFECT OF CAPTOPRIL ON MORTALITY AND MORBIDITY IN PATIENTS WITH LEFT-VENTRICULAR DYSFUNCTION AFTER MYOCARDIAL-INFARCTION - RESULTS OF THE SURVIVAL AND VENTRICULAR ENLARGEMENT TRIAL [J].
PFEFFER, MA ;
BRAUNWALD, E ;
MOYE, LA ;
BASTA, L ;
BROWN, EJ ;
CUDDY, TE ;
DAVIS, BR ;
GELTMAN, EM ;
GOLDMAN, S ;
FLAKER, GC ;
KLEIN, M ;
LAMAS, GA ;
PACKER, M ;
ROULEAU, J ;
ROULEAU, JL ;
RUTHERFORD, J ;
WERTHEIMER, JH ;
HAWKINS, CM .
NEW ENGLAND JOURNAL OF MEDICINE, 1992, 327 (10) :669-677