String theory and noncommutative geometry

被引:3665
作者
Seiberg, N [1 ]
Witten, E [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 1999年 / 09期
关键词
Bosonic strings; D-branes; space-time symmetries; gauge; symmetry;
D O I
10.1088/1126-6708/1999/09/032
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero B-field. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from this limit. Our analysis leads us to an equivalence between ordinary gauge fields and noncommutative gauge fields, which is realized by a change of variables that can be described explicitly. This change of variables is checked by comparing the ordinary Dirac-Born-Infeld theory with its noncommutative counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its T-duality, and Morita equivalence. We also discuss the D0/D4 system, the relation to M-theory in DLCQ, and a possible noncommutative version of the six-dimensional (2,0) theory.
引用
收藏
页码:XLII / 92
页数:2
相关论文
共 107 条
[1]   OPEN STRINGS IN BACKGROUND GAUGE-FIELDS [J].
ABOUELSAOOD, A ;
CALLAN, CG ;
NAPPI, CR ;
YOST, SA .
NUCLEAR PHYSICS B, 1987, 280 (04) :599-624
[2]  
Aharony O., 1998, ADV THEOR MATH PHYS, V2, P119, DOI [10.4310/ATMP.1998.v2.n1.a5[hep-th/9712117, DOI 10.4310/ATMP.1998.V2.N1.A5]
[3]  
Ardalan F, 1999, J HIGH ENERGY PHYS
[4]  
ARDALAN F, HEPTH9906161
[5]  
Ardalan F, HEPTH9803067
[6]  
ASTASHKEVICH A, HEPTH9810147
[7]   New Goldstone multiplet for partially broken supersymmetry [J].
Bagger, J ;
Galperin, A .
PHYSICAL REVIEW D, 1997, 55 (02) :1091-1098
[8]   Matrix theory [J].
Banks, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 67 :180-224
[9]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[10]   NONPERTURBATIVE INFINITIES [J].
BANKS, T ;
SEIBERG, N .
NUCLEAR PHYSICS B, 1986, 273 (01) :157-164