Using generalized ensemble simulations and Markov state models to identify conformational states
被引:238
作者:
Bowman, Gregory R.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Biophys Program, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Bowman, Gregory R.
[2
]
Huang, Xuhui
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Bioengn, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Huang, Xuhui
[3
]
Pande, Vijay S.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USA
Stanford Univ, Biophys Program, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Pande, Vijay S.
[1
,2
]
机构:
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
Part of understanding a molecule's conformational dynamics is mapping out the dominant metastable, or long lived, states that it occupies. Once identified, the rates for transitioning between these states may then be determined in order to create a complete model of the system's conformational dynamics. Here we describe the use of the MSMBuilder package (now available at http://simtk.org/home/msmbuilder/) to build Markov State Models (MSMs) to identify the metastable states from Generalized Ensemble (GE) simulations, as well as other simulation datasets. Besides building MSMs, the code also includes tools for model evaluation and visualization. (c) 2009 Elsevier Inc. All rights reserved.