Bioreactors mediate the effectiveness of tissue engineering scaffolds

被引:153
作者
Pei, M
Solchaga, LA
Seidel, J
Zeng, L
Vunjak-Novakovic, G
Caplan, AI
Freed, LE
机构
[1] MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Case Western Reserve Univ, Dept Biol, Skeletal Res Ctr, Cleveland, OH 44106 USA
关键词
chondrocyte; Hyaff-11((R)); polyglycolic acid; cartilage;
D O I
10.1096/fj.02-0083fje
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We hypothesized that the mechanically active environment present in rotating bioreactors mediates the effectiveness of three-dimensional (3D) scaffolds for cartilage tissue engineering. Cartilaginous constructs were engineered by using bovine calf chondrocytes in conjunction with two scaffold materials (SM) (benzylated hyaluronan and polyglycolic acid); three scaffold structures (SS) (sponge, non-woven mesh, and composite woven/non-woven mesh); and two culture systems (CS) (a bioreactor system and petri dishes). Construct size, composition [cells, glycosaminoglycans (GAG), total collagen, and type-specific collagen mRNA expression and protein levels], and mechanical function (compressive modulus) were assessed, and individual and interactive effects of model system parameters (SM, SS, CS, SM*CS and SS*CS) were demonstrated. The CS affected cell seeding (higher yields of more spatially uniform cells were obtained in bioreactor-grown than dish-grown 3-day constructs) and subsequently affected chondrogenesis (higher cell numbers, wet weights, wet weight GAG fractions, and collagen type II levels were obtained in bioreactor-grown than dish-grown 1-month constructs). In bioreactors, mesh-based scaffolds yielded 1-month constructs with lower type I collagen levels and four-fold higher compressive moduli than corresponding sponge-based scaffolds. The data imply that interactions between bioreactors and 3D tissue engineering scaffolds can be utilized to improve the structure, function, and molecular properties of in vitro-generated cartilage.
引用
收藏
页码:1691 / +
页数:21
相关论文
共 62 条
[1]  
Aigner J, 1998, J BIOMED MATER RES, V42, P172, DOI 10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO
[2]  
2-M
[3]   INDEPENDENT EXPRESSION OF FIBRIL-FORMING COLLAGEN-I, COLLAGEN-II, AND COLLAGEN-III IN CHONDROCYTES OF HUMAN OSTEOARTHRITIC CARTILAGE [J].
AIGNER, T ;
BERTLING, W ;
STOSS, H ;
WESELOH, G ;
VONDERMARK, K .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 91 (03) :829-837
[4]   Cell differentiation by mechanical stress [J].
Altman, GH ;
Horan, RL ;
Martin, I ;
Farhadi, J ;
Stark, PRH ;
Volloch, V ;
Richmond, JC ;
Vunjak-Novakovic, G ;
Kaplan, DL .
FASEB JOURNAL, 2001, 15 (14) :270-+
[5]  
BALAZS E A, 1973, International Ophthalmology Clinics, V13, P169, DOI 10.1097/00004397-197301330-00014
[6]   Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage [J].
Bonassar, LJ ;
Grodzinsky, AJ ;
Srinivasan, A ;
Davila, SG ;
Trippel, SB .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 379 (01) :57-63
[7]  
Brun P, 1999, J BIOMED MATER RES, V46, P337, DOI 10.1002/(SICI)1097-4636(19990905)46:3<337::AID-JBM5>3.0.CO
[8]  
2-Q
[9]   Articular cartilage .2. Degeneration and osteoarthrosis, repair, regeneration, and transplantation [J].
Buckwalter, JA ;
Mankin, HJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (04) :612-632
[10]   Semisynthetic resorbable materials from hyaluronan esterification [J].
Campoccia, D ;
Doherty, P ;
Radice, M ;
Brun, P ;
Abatangelo, G ;
Williams, DF .
BIOMATERIALS, 1998, 19 (23) :2101-2127