Chronic and acute effects of thiazolidinediones BM13.1258 and BM15.2054 on rat skeletal muscle glucose metabolism

被引:25
作者
Fürnsinn, C
Brunmair, B
Meyer, M
Neschen, S
Furtmüller, R
Roden, M
Kühnle, HF
Nowotny, P
Schneider, B
Waldhäusl, W
机构
[1] Dept Med 3, Div Endocrinol & Metab, A-1090 Vienna, Austria
[2] Inst Med Stat, A-1090 Vienna, Austria
[3] Hoffmann La Roche Boehringer Mannheim Corp, Res Labs, Mannheim, Germany
关键词
thiazolidinedione; BM13.1258; BM15.2054; insulin sensitivity; glucose transport; glycogen synthesis; glucose oxidation; skeletal muscle;
D O I
10.1038/sj.bjp.0702886
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1 New thiazolidinediones BM13.1258 and BM15.2054 were studied with regard to their PPAR gamma-agonistic activities and to their acute and chronic effects on glucose metabolism in soleus muscle strips from lean and genetically obese rats. 2 Both BM13.1258 and BM15.2054 revealed to be potent PPAR gamma-activators in transient transfection assays in vitro. 3 In insulin-resistant obese rats, but not in lean rats, 10 days of oral treatment with either compound increased the stimulatory effect of insulin on muscle glycogen synthesis to a similar extent (insulin-induced increment in mu mol glucose incorporated into glycogen g(-1) h(-1): control, + 1.19 +/- 0.28; BM13.1258, + 2.50 +/- 0.20; BM15.2054, + 2.55 +/- 0.46; P < 0.05 vs control each). 4 In parallel to insulin sensitization, mean glucose oxidation increased insulin-independently in response to BM13.1258 (to 191 and 183% of control in the absence and presence of insulin, respectively; P < 0.01 each), which was hardly seen in response to BM15.2054 (to 137 and 124% of control, respectively; ns). 5 Comparable effects on PPAR gamma activation and on amelioration of insulin resistance by BM13.1258 and BM15.2054 were therefore opposed by different effects on glucose oxidation. 6 In contrast to chronic oral treatment, acute exposure of muscles to BM13.1258 or BM15.2054 in vitro elicited a distinct catabolic response of glucose metabolism in specimens from both lean and obese rats. 7 The results provide evidence that BM13.1258 and BM15.2054 can affect muscle glucose metabolism via more than one mechanism of action. 8 Further efforts are required to clarify, to what extent the activation of PPAR gamma are involved sensitization via thiazolidinediones. other mechanisms besides insulin in the antidiabetic actions of thiazolidinediones.
引用
收藏
页码:1141 / 1148
页数:8
相关论文
共 32 条
[1]   Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells [J].
Aubert, J ;
Champigny, O ;
SaintMarc, P ;
Negrel, R ;
Collins, S ;
Ricquier, D ;
Ailhaud, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 238 (02) :606-611
[2]   Acute and chronic effects of troglitazone (CS-045) on isolated rat ventricular cardiomyocytes [J].
Bahr, M ;
Spelleken, M ;
Bock, M ;
vonHoltey, M ;
Kiehn, R ;
Eckel, J .
DIABETOLOGIA, 1996, 39 (07) :766-774
[3]   RATES AND TISSUE SITES OF NON-INSULIN-MEDIATED AND INSULIN-MEDIATED GLUCOSE-UPTAKE IN HUMANS [J].
BARON, AD ;
BRECHTEL, G ;
WALLACE, P ;
EDELMAN, SV .
AMERICAN JOURNAL OF PHYSIOLOGY, 1988, 255 (06) :E769-E774
[4]   Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: Binding and activation correlate with antidiabetic actions in db/db mice [J].
Berger, J ;
Bailey, P ;
Biswas, C ;
Cullinan, CA ;
Doebber, TW ;
Hayes, NS ;
Saperstein, R ;
Smith, RG ;
Leibowitz, MD .
ENDOCRINOLOGY, 1996, 137 (10) :4189-4195
[5]   Novel peroxisome proliferator-activated receptor (PPAR) γ and PPARδ ligands produce distinct biological effects [J].
Berger, J ;
Leibowitz, MD ;
Doebber, TW ;
Elbrecht, A ;
Zhang, B ;
Zhou, GC ;
Biswas, C ;
Cullinan, CA ;
Hayes, NS ;
Li, Y ;
Tanen, M ;
Ventre, J ;
Wu, MS ;
Berger, GD ;
Mosley, R ;
Marquis, R ;
Santini, C ;
Sahoo, SP ;
Tolman, RL ;
Smith, RG ;
Moller, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (10) :6718-6725
[6]   Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature [J].
Boss, O ;
Samec, S ;
Kühne, F ;
Bijlenga, P ;
Assimacopoulos-Jeannet, F ;
Seydoux, J ;
Giacobino, JP ;
Muzzin, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :5-8
[7]   THE EFFECT OF CP 68,722, A THIOZOLIDINEDIONE DERIVATIVE, ON INSULIN SENSITIVITY IN LEAN AND OBESE ZUCKER RATS [J].
BOWEN, L ;
STEIN, PP ;
STEVENSON, R ;
SHULMAN, GI .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1991, 40 (10) :1025-1030
[8]   Thiazolidinediones stimulate uncoupling protein-2 expression in cell lines representing white and brown adipose tissues and skeletal muscle [J].
Camirand, A ;
Marie, V ;
Rabelo, R ;
Silva, JE .
ENDOCRINOLOGY, 1998, 139 (01) :428-431
[9]  
CHEN CA, 1988, BIOTECHNIQUES, V6, P632
[10]   INSULIN RESISTANCE IN SOLEUS MUSCLE FROM OBESE ZUCKER RATS - INVOLVEMENT OF SEVERAL DEFECTIVE SITES [J].
CRETTAZ, M ;
PRENTKI, M ;
ZANINETTI, D ;
JEANRENAUD, B .
BIOCHEMICAL JOURNAL, 1980, 186 (02) :525-534