Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from inositol 1,4,5-triphosphate (IP3)/ryanodine-sensitive stores.

被引:122
作者
Lovett, JL
Marchesini, N
Moreno, SNJ
Sibley, LD
机构
[1] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA
[2] Univ Illinois, Coll Vet Med, Dept Pathobiol, Mol Parasitol Lab, Urbana, IL 61802 USA
关键词
D O I
10.1074/jbc.M202553200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calcium-mediated microneme secretion in Toxoplasma gondii is stimulated by contact with host cells, resulting in the discharge of adhesins that mediate attachment. The intracellular source of calcium and the signaling pathway(s) triggering release have not been characterized, prompting our search for mediators of calcium signaling and microneme secretion in T. gondii. We identified two stimuli of microneme secretion, ryanodine and caffeine, which enhanced release of calcium from parasite intracellular stores. Ethanol, a previously characterized trigger of microneme secretion, stimulated an increase in parasite inositol 1,4,5-triphosphate, implying that this second messenger may mediate intracellular calcium release. Consistent with this observation, xestospongin C, an inositol 1,4,5-triphosphate receptor antagonist, inhibited microneme secretion and blocked parasite attachment and invasion of host cells. Collectively, these results suggest that T. gondii possess an intracellular calcium release channel with properties of the inositol 1,4,5-triphosphate/ryanodine receptor superfamily. Intracellular calcium channels, previously studied almost exclusively in multicellular animals, appear to also be critical to the control of parasite calcium during the initial steps of host cell entry.
引用
收藏
页码:25870 / 25876
页数:7
相关论文
共 48 条
[1]  
AIREY JA, 1990, J BIOL CHEM, V265, P14187
[2]   PlasmoDB:: the Plasmodium genome resource.: An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished) [J].
Bahl, A ;
Brunk, B ;
Coppel, RL ;
Crabtree, J ;
Diskin, SJ ;
Fraunholz, MJ ;
Grant, GR ;
Gupta, D ;
Huestis, RL ;
Kissinger, JC ;
Labo, P ;
Li, L ;
McWeeney, SK ;
Milgram, AJ ;
Roos, DS ;
Schug, J ;
Stoeckert Jr, CJ .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :87-90
[3]   A kingdom-level phylogeny of eukaryotes based on combined protein data [J].
Baldauf, SL ;
Roger, AJ ;
Wenk-Siefert, I ;
Doolittle, WF .
SCIENCE, 2000, 290 (5493) :972-977
[4]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[5]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[6]   The toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains [J].
Brecht, S ;
Carruthers, VB ;
Ferguson, DJP ;
Giddings, OK ;
Wang, G ;
Jäkle, U ;
Harper, JM ;
Sibley, LD ;
Soldati, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (06) :4119-4127
[7]   Structural insights into the molecular mechanism of Ca2+-dependent exocytosis [J].
Brunger, AT .
CURRENT OPINION IN NEUROBIOLOGY, 2000, 10 (03) :293-302
[8]  
BUCK E, 1992, J BIOL CHEM, V267, P23560
[9]   INOSITOL TRISPHOSPHATE-DEPENDENT AND TRISPHOSPHATE-INDEPENDENT CA2+ MOBILIZATION PATHWAYS AT THE VACUOLAR MEMBRANE OF CANDIDA-ALBICANS [J].
CALVERT, CM ;
SANDERS, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (13) :7272-7280
[10]   Secretion of micronemal proteins is associated with toxoplasma invasion of host cells [J].
Carruthers, VB ;
Giddings, OK ;
Sibley, LD .
CELLULAR MICROBIOLOGY, 1999, 1 (03) :225-235