Principles of multilevel modelling

被引:338
作者
Greenland, S [1 ]
机构
[1] Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Topanga, CA 90290 USA
关键词
Bayesian statistics; empirical-Bayes estimation; hierarchical regression; mixed models; multilevel modelling; random-coefficient regression; ridge regression; risk assessment; Stein estimation;
D O I
10.1093/ije/29.1.158
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background Multilevel modelling, also known as hierarchical regression, generalizes ordinary regression modelling to distinguish multiple levels of information in a model. Use of multiple levels gives rise to an enormous range of statistical benefits. To aid in understanding these benefits, this article provides an elementary introduction to the conceptual basis for multilevel modelling, beginning with classical frequentist, Bayes, and empirical-Bayes techniques as special cases. The article focuses on the role of multilevel averaging ('shrinkage') in the reduction of estimation error, and the role of prior information in finding good averages.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 52 条
[1]  
[Anonymous], 1974, TECHNOMETRICS
[2]  
BOX GEP, 1983, SCI INFERENCE DATA A
[3]  
Brandwein AC., 1990, Statistical Science, V5, P356, DOI DOI 10.1214/SS/1177012104
[4]  
Bryk A.S., 1992, Hierarchical Models: Applications and Data Analysis Methods
[5]  
Carlin B. P., 2001, BAYES EMPIRICAL BAYE
[6]   AN INTRODUCTION TO EMPIRICAL BAYES DATA-ANALYSIS [J].
CASELLA, G .
AMERICAN STATISTICIAN, 1985, 39 (02) :83-87
[7]  
COPAS JB, 1983, J R STAT SOC B, V45, P311
[8]  
COX DR, 1974, THEORETICAL STAT, pCH11
[9]  
de Finetti Bruno, 1974, THEORY PROBABILITY C, V1-2, DOI 10.1002/9781119286387
[10]   BAYES EMPIRICAL BAYES [J].
DEELY, JJ ;
LINDLEY, DV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :833-841