The KINX ideal MHD stability code for axisymmetric plasmas with separatrix

被引:122
作者
Degtyarev, L
Martynov, A
Medvedev, S
Troyon, F
Villard, L
Gruber, R
机构
[1] ECOLE POLYTECH FED LAUSANNE,CRPP,PPB,ASSOC EURATOM CONFEDERAT SUISSE,CH-1015 LAUSANNE,SWITZERLAND
[2] RUSSIAN ACAD SCI,MV KELDYSH APPL MATH INST,MOSCOW,RUSSIA
[3] ECOLE POLYTECH FED LAUSANNE,SERV INFORMAT CENT,LAUSANNE,SWITZERLAND
关键词
magnetohydrodynamics; macroinstabilities; tokamak; separatrix; finite elements; spectrum;
D O I
10.1016/S0010-4655(97)00037-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper presents the KINX code for computing linear ideal MHD growth rates and eigenvectors of axisymmetric plasmas surrounded by a vacuum layer and a conducting wall. Plasma equilibrium magnetic surfaces are assumed to be nested either in the whole plasma domain (separatrix at the plasma boundary is possible) or in the domains separated by an internal separatrix (doublet and divertor configurations). The computational domain is decomposed into subdomains with nested flux surfaces. In each subdomain finite hybrid elements are used on an equilibrium grid adapted to magnetic surfaces. Numerical destabilization is eliminated; this results in better convergence properties and makes possible efficient stability index calculation (delta W-code). An inverse vector iteration method and a vectorizable matrix solver are applied to the matrix eigenvalue problem. The stability studies of external kink modes for doublet and single null configurations are given as application examples of the KINX code. Another version of the code, KINX-W, computing resistive wall n = 0 mode growth rates, is also presented for single null, doublet and divertor plasma configurations.
引用
收藏
页码:10 / 27
页数:18
相关论文
共 30 条
  • [1] GATO - AN MHD STABILITY CODE FOR AXISYMMETRIC PLASMAS WITH INTERNAL SEPARATRICES
    BERNARD, LC
    HELTON, FJ
    MOORE, RW
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (3-4) : 377 - 380
  • [2] AN ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY PROBLEMS
    BERNSTEIN, IB
    FRIEMAN, EA
    KRUSKAL, MD
    KULSRUD, RM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 244 (1236): : 17 - 40
  • [3] RESISTIVE TOROIDAL STABILITY OF INTERNAL KINK MODES IN CIRCULAR AND SHAPED TOKAMAKS
    BONDESON, A
    VLAD, G
    LUTJENS, H
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07): : 1889 - 1900
  • [4] COMPARATIVE NUMERICAL STUDIES OF IDEAL MAGNETOHYDRODYNAMIC INSTABILITIES
    CHANCE, MS
    GREENE, JM
    GRIMM, RC
    JOHNSON, JL
    MANICKAM, J
    KERNER, W
    BERGER, D
    BERNARD, LC
    GRUBER, R
    TROYON, F
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 28 (01) : 1 - 13
  • [5] NOVA - A NONVARIATIONAL CODE FOR SOLVING THE MHD STABILITY OF AXISYMMETRICAL TOROIDAL PLASMAS
    CHENG, CZ
    CHANCE, MS
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 71 (01) : 124 - 146
  • [6] AN INVERSE VARIABLE TECHNIQUE IN THE MHD-EQUILIBRIUM PROBLEM
    DEGTYAREV, LM
    DROZDOV, VV
    [J]. COMPUTER PHYSICS REPORTS, 1985, 2 (07): : 341 - 387
  • [7] METHODS FOR NUMERICAL-SIMULATION OF IDEAL MHD STABILITY OF AXISYMMETRICAL PLASMAS
    DEGTYAREV, LM
    MEDVEDEV, SY
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1986, 43 (01) : 29 - 56
  • [8] DEGTYAREV LM, 1996, P CONTRIB PAPERS C 3, V20, P1191
  • [9] DEGTYAREV LM, 1994, P CONTRIB PAPERS B 2, V18, P556
  • [10] DEGTYAREV LM, 1995, P CONTRIB PAPERS C 1, V19, P217