The Quicksort process

被引:7
作者
Ragab, Mahmoud [1 ]
Roesler, Uwe [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Cairo 11884, Egypt
[2] Christian Albrechts Univ Kiel, Math Seminar, D-24098 Kiel, Germany
关键词
Sorting; Quicksort; Divide and conquer algorithm; Random algorithm; Running time analysis; Stochastic process; Cadlag functions; Asymptotics; Skorodhod metric;
D O I
10.1016/j.spa.2013.09.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quicksort on the fly returns the input of n reals in increasing natural order during the sorting process. Correctly normalized the running time up to returning the l-th smallest out of n seen as a process in 1 converges weakly to a limiting process with path in the space of cadlag functions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1036 / 1054
页数:19
相关论文
共 18 条
[1]  
[Anonymous], 1998, SORTING SEARCHING
[2]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[3]   Asymptotic distribution theory for Hoare's selection algorithm [J].
Grubel, R ;
Rosler, U .
ADVANCES IN APPLIED PROBABILITY, 1996, 28 (01) :252-269
[4]  
Hoare C. A., 1961, Communications of the ACM, V4, P321, DOI DOI 10.1145/366622.366644
[5]   QUICKSORT [J].
HOARE, CAR .
COMPUTER JOURNAL, 1962, 5 (01) :10-&
[6]  
Knof D, 2012, DISCRETE MATH THEOR, V14, P129
[7]  
Martinez C., 2001, SIAM Journal on Computing, V31, P683, DOI 10.1137/S0097539700382108
[8]  
Martinez C., 2004, PROC 6 ACMSIAM WORKS, P224
[9]   A LIMITING DISTRIBUTION FOR QUICKSORT [J].
REGNIER, M .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1989, 23 (03) :335-343
[10]  
[No title captured]