Cyclin-dependent kinases regulate the antiproliferative function of Smads

被引:418
作者
Matsuura, I
Denissova, NG
Wang, GN
He, DM
Long, JY
Liu, F [1 ]
机构
[1] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Susan Lehman Cullman Lab Canc Res, Dept Biol Chem, Ernest Mario Sch Pharm, Piscataway, NJ 08854 USA
[3] Canc Inst New Jersey, New Brunswick, NJ 08903 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature02650
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transforming growth factor-beta (TGF-beta) potently inhibits cell cycle progression at the G1 phase(1,2). Smad3 has a key function in mediating the TGF-beta growth-inhibitory response. Here we show that Smad3 is a major physiological substrate of the G1 cyclin-dependent kinases CDK4 and CDK2. Except for the retinoblastoma protein family(3,4), Smad3 is the only CDK4 substrate demonstrated so far. We have mapped CDK4 and CDK2 phosphorylation sites to Thr 8, Thr 178 and Ser 212 in Smad3. Mutation of the CDK phosphorylation sites increases Smad3 transcriptional activity, leading to higher expression of the CDK inhibitor p15. Mutation of the CDK phosphorylation sites of Smad3 also increases its ability to downregulate the expression of c-myc. Using Smad3(-/-) mouse embryonic fibroblasts and other epithelial cell lines, we further show that Smad3 inhibits cell cycle progression from G1 to S phase and that mutation of the CDK phosphorylation sites in Smad3 increases this ability. Taken together, these findings indicate that CDK phosphorylation of Smad3 inhibits its transcriptional activity and antiproliferative function. Because cancer cells often contain high levels of CDK activity(5,6), diminishing Smad3 activity by CDK phosphorylation may contribute to tumorigenesis and TGF-beta resistance in cancers.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 30 条
  • [1] Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response
    Ashcroft, GS
    Yang, X
    Glick, AB
    Weinstein, M
    Letterio, JJ
    Mizel, DE
    Anzano, M
    Greenwell-Wild, T
    Wahl, SM
    Deng, CX
    Roberts, AB
    [J]. NATURE CELL BIOLOGY, 1999, 1 (05) : 260 - 266
  • [2] E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression
    Chen, CR
    Kang, YB
    Siegel, PM
    Massagué, J
    [J]. CELL, 2002, 110 (01) : 19 - 32
  • [3] Defective repression of c-myc in breast cancer cells:: A loss at the core of the transforming growth factor β growth arrest program
    Chen, CR
    Kang, YB
    Massagué, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) : 992 - 999
  • [4] Datto MB, 1999, MOL CELL BIOL, V19, P2495
  • [5] TGF-β signaling in tumor suppression and cancer progression
    Derynck, R
    Akhurst, RJ
    Balmain, A
    [J]. NATURE GENETICS, 2001, 29 (02) : 117 - 129
  • [6] Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β
    Feng, XH
    Lin, X
    Derynck, R
    [J]. EMBO JOURNAL, 2000, 19 (19) : 5178 - 5193
  • [7] Transforming growth factor β-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element
    Frederick, JP
    Liberati, NT
    Waddell, DS
    Shi, YG
    Wang, XF
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (06) : 2546 - 2559
  • [8] Hall M, 1996, ADV CANCER RES, V68, P67, DOI 10.1016/S0065-230X(08)60352-8
  • [9] Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer
    Han, SU
    Kim, HT
    Seong, DH
    Kim, YS
    Park, YS
    Bang, YJ
    Yang, HK
    Kim, SJ
    [J]. ONCOGENE, 2004, 23 (07) : 1333 - 1341
  • [10] P15(INK4B) IS A POTENTIAL EFFECTOR OF TGF-BETA-INDUCED CELL-CYCLE ARREST
    HANNON, GJ
    BEACH, D
    [J]. NATURE, 1994, 371 (6494) : 257 - 261