Structural changes during ion channel gating

被引:57
作者
Doyle, DA [1 ]
机构
[1] Univ Oxford, Botnar Res Ctr, Struct Genom Consortium, Oxford OX3 7LD, England
关键词
D O I
10.1016/j.tins.2004.04.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Ion channels are generally multi-subunit complexes, with the ion conduction pathway formed at the subunit interface. In moving between the closed and open states, three structurally distinct channels, represented by the recently determined structures of a mechanosensitive, ligand-gated and K+ selective channel, all move transmembrane helices away from the central ion conduction pathway. In all three cases, this results in the displacement of a hydrophobic gate from the ion conduction pathway, freeing ion movement. The channels achieve this by moving the transmembrane helices as rigid bodies using three major types of motion: MscL tilts its helices, the nicotinic ACh receptor rotates its helices, and KirBac1.1 bends its helices. In all cases, the gating motions are likely to take place rapidly. These large and fast movements provide a possible explanation for why the conduction pathways of a wide range of different ion channels are formed at the interface between subunits.
引用
收藏
页码:298 / 302
页数:5
相关论文
共 25 条
[1]   Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels [J].
Accardi, A ;
Miller, C .
NATURE, 2004, 427 (6977) :803-807
[2]   IDENTIFICATION OF ACETYLCHOLINE-RECEPTOR CHANNEL-LINING RESIDUES IN THE ENTIRE M2 SEGMENT OF THE ALPHA-SUBUNIT [J].
AKABAS, MH ;
KAUFMANN, C ;
ARCHDEACON, P ;
KARLIN, A .
NEURON, 1994, 13 (04) :919-927
[3]   Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors [J].
Arias, HR .
NEUROCHEMISTRY INTERNATIONAL, 2000, 36 (07) :595-645
[4]   IDENTIFYING THE LIPID-PROTEIN INTERFACE OF THE TORPEDO NICOTINIC ACETYLCHOLINE-RECEPTOR - SECONDARY STRUCTURE IMPLICATIONS [J].
BLANTON, MP ;
COHEN, JB .
BIOCHEMISTRY, 1994, 33 (10) :2859-2872
[5]   Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors [J].
Brejc, K ;
van Dijk, WJ ;
Klaassen, RV ;
Schuurmans, M ;
van der Oost, J ;
Smit, AB ;
Sixma, TK .
NATURE, 2001, 411 (6835) :269-276
[6]   Structure of the MscL homolog from Mycobacterium tuberculosis:: A gated mechanosensitive ion channel [J].
Chang, G ;
Spencer, RH ;
Lee, AT ;
Barclay, MT ;
Rees, DC .
SCIENCE, 1998, 282 (5397) :2220-2226
[7]   Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli [J].
Cruickshank, CC ;
Minchin, RF ;
LeDain, AC ;
Martinac, B .
BIOPHYSICAL JOURNAL, 1997, 73 (04) :1925-1931
[8]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[9]   X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity [J].
Dutzler, R ;
Campbell, EB ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 415 (6869) :287-294
[10]   Crystal structure and mechanism of a calcium-gated potassium channel [J].
Jiang, YX ;
Lee, A ;
Chen, JY ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 417 (6888) :515-522