Burrows-Wheeler compression with variable length integer codes

被引:14
作者
Fenwick, P [1 ]
机构
[1] Univ Auckland, Dept Comp Sci, Auckland 1, New Zealand
关键词
Burrows-Wheeler compression; Elias gamma codes; Fibonacci codes; Fraenkel-Klein codes; universal codes;
D O I
10.1002/spe.484
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The final coder in Burrows-Wheeler compression is usually either an adaptive Huffman coder (for speed) or a complex of arithmetic coders for better compression. This article describes the use of conventional predefined variable length codes or universal codes and shows that they too can give excellent compression. The paper also describes a 'sticky Move-to-Front' modification which gives a useful improvement in compression for most files. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1307 / 1316
页数:10
相关论文
共 17 条
[1]   Generalization of the BWT transformation and inversion ranks [J].
Arnavut, Z .
DCC 2002: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2002, :447-447
[2]   Modifications of the Burrows and Wheeler data compression algorithm [J].
Balkenhol, B ;
Kurtz, S ;
Shtarkov, YM .
DCC '99 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1999, :188-197
[3]  
BALKENHOL B, ONE ATTEMPT COMPRESS
[4]  
BURROWS M, 1994, 124 SRC DIG SYST RES
[5]  
Deorowicz S, 2000, SOFTWARE PRACT EXPER, V30, P1465, DOI 10.1002/1097-024X(20001110)30:13<1465::AID-SPE345>3.0.CO
[6]  
2-D
[8]  
ELIAS P, 1975, IEEE T INFORM THEORY, V21, P194, DOI 10.1109/TIT.1975.1055349
[9]  
FENWICK P, 1996, 130 U AUCKL DEP COMP
[10]  
FENWICK P, 1995, 120 U AUCKL DEP COMP