Inference when a nuisance parameter is weakly identified under the null hypothesis

被引:4
作者
Anatolyev, S [1 ]
机构
[1] New Econ Sch, Moscow 117418, Russia
关键词
weak identification; size distortion; drifting parameter DGP; threshold model;
D O I
10.1016/j.econlet.2003.12.023
中图分类号
F [经济];
学科分类号
02 ;
摘要
When a nuisance parameter is weakly identified under the null hypothesis, the usual asymptotic theory breaks down and standard tests may exhibit significant size distortions. We provide asymptotic approximations under a drifting parameter DGP for distributions of classical tests and of those designed for the case of complete nonidentification. Simulations with a simple SETAR model show that the usual asymptotic theory does fail, although actual sizes of the classical Likelihood Ratio test display surprising robustness to the degree of identification. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 5 条
[1]   OPTIMAL TESTS WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER THE ALTERNATIVE [J].
ANDREWS, DWK ;
PLOBERGER, W .
ECONOMETRICA, 1994, 62 (06) :1383-1414
[2]   HYPOTHESIS-TESTING WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER THE ALTERNATIVE [J].
DAVIES, RB .
BIOMETRIKA, 1987, 74 (01) :33-43
[3]   Instrumental variables regression with weak instruments [J].
Staiger, D ;
Stock, JH .
ECONOMETRICA, 1997, 65 (03) :557-586
[4]   GMM with weak identification [J].
Stock, JH ;
Wright, JH .
ECONOMETRICA, 2000, 68 (05) :1055-1096
[5]   A matrix extension of the Cauchy-Schwarz inequality [J].
Tripathi, G .
ECONOMICS LETTERS, 1999, 63 (01) :1-3