Mean-value identities as an opportunity for Monte Carlo error reduction

被引:14
作者
Fernandez, L. A. [1 ,2 ]
Martin-Mayor, V. [1 ,2 ]
机构
[1] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
[2] Inst Biocomputac & Fis Sistemas Complejos BIFI, Zaragoza 50009, Spain
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 05期
关键词
Ising model; Monte Carlo methods; statistical mechanics; CRITICAL EXPONENTS;
D O I
10.1103/PhysRevE.79.051109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the two-dimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
引用
收藏
页数:9
相关论文
共 27 条
[1]  
Amit D., 2005, Field Theory, the Renormalization Group and Critical Phenomena: Graphs to Computers
[2]  
[Anonymous], 1964, Monte Carlo Methods, DOI DOI 10.1007/978-94-009-5819-7
[3]   Test for random number generators: Schwinger-Dyson equations for the Ising model [J].
Ballesteros, HG ;
Martin-Mayor, V .
PHYSICAL REVIEW E, 1998, 58 (05) :6787-6791
[4]   Finite size effects on measures of critical exponents in d=3 O(N) models [J].
Ballesteros, HG ;
Fernandez, LA ;
MartinMayor, V ;
Sudupe, AM .
PHYSICS LETTERS B, 1996, 387 (01) :125-131
[5]   Critical exponents of the three-dimensional diluted Ising model [J].
Ballesteros, HG ;
Fernandez, LA ;
Martin-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
PHYSICAL REVIEW B, 1998, 58 (05) :2740-2747
[6]   Nonequilibrium Spin-Glass Dynamics from Picoseconds to a Tenth of a Second [J].
Belletti, F. ;
Cotallo, M. ;
Cruz, A. ;
Fernandez, L. A. ;
Gordillo-Guerrero, A. ;
Guidetti, M. ;
Maiorano, A. ;
Mantovani, F. ;
Marinari, E. ;
Martin-Mayor, V. ;
Sudupe, A. Munoz ;
Navarro, D. ;
Parisi, G. ;
Perez-Gaviro, S. ;
Ruiz-Lorenzo, J. J. ;
Schifano, S. F. ;
Sciretti, D. ;
Tarancon, A. ;
Tripiccione, R. ;
Velasco, J. L. ;
Yllanes, D. .
PHYSICAL REVIEW LETTERS, 2008, 101 (15)
[7]   A NOTE ON GREEN FUNCTIONS AND THE ISING MODEL [J].
CALLEN, HB .
PHYSICS LETTERS, 1963, 4 (03) :161-161
[8]   SOLVING PHI-4(1,2) FIELD-THEORY WITH MONTE-CARLO [J].
COOPER, F ;
FREEDMAN, B ;
PRESTON, D .
NUCLEAR PHYSICS B, 1982, 210 (02) :210-228
[9]   THE S-MATRIX IN QUANTUM ELECTRODYNAMICS [J].
DYSON, FJ .
PHYSICAL REVIEW, 1949, 75 (11) :1736-1755
[10]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012