Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction

被引:42
作者
Gindl, Wolfgang [1 ]
Martinschitz, Klaus J.
Boesecke, Peter
Keckes, Jozef
机构
[1] Univ Nat Resources & Appl Life Sci, Dept Mat Sci & Proc Engn, Vienna, Austria
[2] Univ Leoben, Austrian Acad Sci, Erich Schmid Inst Mat Sci, Leoben, Austria
[3] Univ Leoben, Inst Met Phys, Leoben, Austria
[4] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[5] Mat Ctr Leoben, Leoben, Austria
关键词
nanostructures; polymer-matrix composites (PMCs); deformation; X-ray diffraction (XRD); cellulose;
D O I
10.1016/j.compscitech.2006.03.020
中图分类号
TB33 [复合材料];
学科分类号
摘要
Tensile experiments with a regenerated cellulose film reinforced by microcrystalline cellulose, combined with simultaneous synchrotron wide angle X-ray scattering, show that, when mechanically loaded at constant strain rates, the cellulose crystallites tend to orient with their crystallographic c-axis parallel to the force direction and an irreversible preferred orientation is induced. The magnitude of the orientation factor calculated numerically from the experimental data depends linearly on the applied strain and is independent of the actual stress, also in the case of cyclic loading unloading experiments. Upon cyclic unloading and loading in the plastic region, the stiffness of the all-cellulose composite equals approximately the original one or, in the case of the initial unloading stiffness, even shows a significant increase. During tensile straining, the observed degree of preferred orientation was significantly higher for the cellulose I part of the composite compared to the cellulose 11 part, respectively. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2639 / 2647
页数:9
相关论文
共 31 条
[1]  
Alexander L.E., 1969, XRAY DIFFRACTION MET
[2]   Tensile deformation of bacterial cellulose composites [J].
Astley, OM ;
Chanliaud, E ;
Donald, AM ;
Gidley, MJ .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2003, 32 (1-2) :28-35
[3]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[4]   High-performance composites from low-cost plant primary cell walls [J].
Bruce, DM ;
Hobson, RN ;
Farrent, JW ;
Hepworth, DG .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (11) :1486-1493
[5]   Single fibre deformation studies of poly(p-phenylene benzobisoxazole) fibres -: Part I -: Determination of Crystal Modulus [J].
Davies, RJ ;
Montes-Morán, MA ;
Riekel, C ;
Young, RJ .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (13) :3079-3087
[6]  
Dufresne A, 2000, J APPL POLYM SCI, V76, P2080, DOI 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO
[7]  
2-U
[8]  
Dufresne A, 1997, J APPL POLYM SCI, V64, P1185
[9]   POLYMER NANOCOMPOSITES REINFORCED BY CELLULOSE WHISKERS [J].
FAVIER, V ;
CHANZY, H ;
CAVAILLE, JY .
MACROMOLECULES, 1995, 28 (18) :6365-6367
[10]   WIDE ANGLE X-RAY-INVESTIGATION ON THE SUPERMOLECULAR STRUCTURE AT THE CELLULOSE-I CELLULOSE-II PHASE-TRANSITION [J].
FINK, HP ;
FANTER, D ;
PHILIPP, B .
ACTA POLYMERICA, 1985, 36 (01) :1-8