Finite time synchronization of chaotic systems

被引:103
作者
Li, SH [1 ]
Tian, YP [1 ]
机构
[1] Southeast Univ, Dept Automat Control, Nanjing 210096, Peoples R China
关键词
D O I
10.1016/S0960-0779(02)00100-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using finite time control techniques, continuous state feedback control laws are developed to solve the synchronization problem of two chaotic systems. We demonstrate that these two chaotic systems can be synchronized in finite time. Examples of Duffing systems, Lorenz systems are presented to verify our method. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 9 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   Synchronization and control of chaotic systems [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1999, 10 (09) :1571-1575
[3]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58
[4]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[5]   On the synchronization of a class of electronic circuits that exhibit chaos [J].
Bai, EW ;
Lonngren, KE ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2002, 13 (07) :1515-1521
[6]  
Bhat SP, 1997, P AMER CONTR CONF, P2513, DOI 10.1109/ACC.1997.609245
[7]   FINITE-TIME CONTROLLERS [J].
HAIMO, VT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :760-770
[8]   A dynamical control view on synchronization [J].
Nijmeijer, H .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 154 (3-4) :219-228
[9]   On the synchronization of different chaotic oscillators [J].
Xiaofeng, G ;
Lai, CH .
CHAOS SOLITONS & FRACTALS, 2000, 11 (08) :1231-1235