Electrostatic, steric, and hydration interactions favor Na+ condensation around DNA compared with K+

被引:126
作者
Savelyev, Alexey [1 ]
Papoian, Garegin A. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
关键词
D O I
10.1021/ja0629460
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Condensation of monovalent counterions around DNA influences polymer properties of the DNA chain. For example, the Na+ ions show markedly stronger propensity to induce multiple DNA chains to assemble into compact structures compared with the K+ ions. To investigate the similarities and differences in the sodium and potassium ion condensation around DNA, we carried out a number of extensive all-atom molecular dynamics simulations of a DNA oligomer consisting of 16 base pairs, [d(CGAGGTTTAAAC-CTCG)]2, in explicit water. We found that the Na+ ions penetrate the DNA interior and condense around the DNA exterior to a significantly larger degree compared with the K+ ions. We have provided a microscopic explanation for the larger Na+ affinity toward DNA that is based on a combination of steric, electrostatic, and hydration effects. Unexpectedly, we found that the Cl- co-ions provide more efficient electrostatic screening for the K+ ions than for the Na+ ions, contributing to the larger Na+ condensation around DNA. To examine the importance of the discrete nature of water and ions, we also computed the counterion distributions from the mean-field electrostatic theory, demonstrating significant disagreements with the all-atom simulations. Prior experimental results on the relative extent of the Na+ and K+ condensation around DNA were somewhat contradictory. Recent DNA compaction experiments may be interpreted to suggest stronger Na+ condensation around DNA compared to K+, which is consistent with our simulations. We also provide a simple interpretation for the experimentally observed increase in DNA electrophoretic mobility in the alkali metal series, Li+ < Na+ < K+ < Rb+. We compare the DNA segment conformational preferences in various buffers with the proposed NMR models.
引用
收藏
页码:14506 / 14518
页数:13
相关论文
共 66 条
[1]  
Alberts B., 2002, Molecular Biology of The Cell, V4th
[2]   Like-charge attraction between polyelectrolytes induced by counterion charge density waves [J].
Angelini, TE ;
Liang, H ;
Wriggers, W ;
Wong, GCL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :8634-8637
[3]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[4]  
BARRAT JL, 2003, BCONCEPTS SIMPLE COM
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   RELATIVE BINDING AFFINITIES OF MONO-VALENT CATIONS FOR DOUBLE-STRANDED DNA [J].
BLEAM, ML ;
ANDERSON, CF ;
RECORD, MT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1980, 77 (06) :3085-3089
[7]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[8]  
Cheatham TE, 2001, BIOPOLYMERS, V56, P232
[9]   Molecular dynamics simulation of nucleic acids [J].
Cheatham, TE ;
Kollman, PA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :435-471
[10]   Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G [J].
Chiu, TK ;
Kaczor-Grzeskowiak, M ;
Dickerson, RE .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (03) :589-608