Multiple Regression Genetic Programming

被引:95
作者
Arnaldo, Ignacio [1 ]
Krawiec, Krzysztof [2 ]
O'Reilly, Una-May [1 ]
机构
[1] MIT, CSAIL, Cambridge, MA 02139 USA
[2] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
来源
GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE | 2014年
关键词
Genetic Programming; Multiple Regression;
D O I
10.1145/2576768.2598291
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new means of executing a genetic program which improves its output quality. Our approach, called Multiple Regression Genetic Programming (MRGP) decouples and linearly combines a program's subexpressions via multiple regression on the target variable. The regression yields an alternate output: the prediction of the resulting multiple regression model. It is this output, over many fitness cases, that we assess for fitness, rather than the program's execution output. MRGP can be used to improve the fitness of a final evolved solution. On our experimental suite, MRGP consistently generated solutions fitter than the result of competent GP or multiple regression. When integrated into GP, inline MRGP, on the basis of equivalent computational budget, outperforms competent GP while also besting post-run MRGP. Thus MRGP's output method is shown to be superior to the output of program execution and it represents a practical, cost neutral, improvement to GP.
引用
收藏
页码:879 / 886
页数:8
相关论文
共 20 条
[1]   Modeling wine preferences by data mining from physicochemical properties [J].
Cortez, Paulo ;
Cerdeira, Antonio ;
Almeida, Fernando ;
Matos, Telmo ;
Reis, Jose .
DECISION SUPPORT SYSTEMS, 2009, 47 (04) :547-553
[2]  
Curtin RR, 2013, J MACH LEARN RES, V14, P801
[3]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[4]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[5]  
ELIAS P, 1975, IEEE T INFORM THEORY, V21, P194, DOI 10.1109/TIT.1975.1055349
[6]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[7]  
Iba H., 1995, P WORKSH GEN PROGR T, P64
[8]  
Jiang M., 1993, IEEE International Conference on Developing and Managing Intelligent System Projects, P47, DOI 10.1109/DMISP.1993.248637
[9]   Scaled symbolic regression [J].
Keijzer M. .
Genetic Programming and Evolvable Machines, 2004, 5 (03) :259-269
[10]  
Keijzer M, 2003, LECT NOTES COMPUT SC, V2610, P70