Self-organized criticality in two-variable models

被引:31
作者
Hergarten, S [1 ]
Neugebauer, HJ [1 ]
机构
[1] Univ Bonn, D-53012 Bonn, Germany
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 03期
关键词
D O I
10.1103/PhysRevE.61.2382
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a cellular automaton approach involving two variables and investigate its behavior with respect to self-organized criticality (SOC). It can be seen as a generalization of the Bak-Tang-Wiesenfeld and OlamiFeder-Christensen models and exhibits SOC behavior, too. In contrast to these models it leads to a power law distribution of the cluster sizes with an exponent close to one, as it occurs in earthquakes and landsliding processes, without any tuning.
引用
收藏
页码:2382 / 2385
页数:4
相关论文
共 14 条
[1]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]  
BAK P, 1996, HOW NATURE WORKS SCI
[4]  
BURRIDGE R, 1967, B SEISMOL SOC AM, V57, P341
[5]   SCALING, PHASE-TRANSITIONS, AND NONUNIVERSALITY IN A SELF-ORGANIZED CRITICAL CELLULAR-AUTOMATON MODEL [J].
CHRISTENSEN, K ;
OLAMI, Z .
PHYSICAL REVIEW A, 1992, 46 (04) :1829-1838
[6]   SELF-ORGANIZED CRITICALITY AND SYNCHRONIZATION IN A LATTICE MODEL OF INTEGRATE-AND-FIRE OSCILLATORS [J].
CORRAL, A ;
PEREZ, CJ ;
DIAZGUILERA, A ;
ARENAS, A .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :118-121
[7]  
Gutenberg B., 1954, SEISMICITY EARTH ASS
[8]  
Hovius N, 1997, GEOLOGY, V25, P231, DOI 10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO
[9]  
2
[10]  
Jensen H.J., 1998, SELF ORG CRITICALLY