Intrinsically Disordered p53 Extreme C-Terminus Binds to S100B(ββ) through "Fly-Casting"

被引:79
作者
Chen, Jianhan [1 ]
机构
[1] Kansas State Univ, Dept Biochem, Manhattan, KS 66506 USA
关键词
UNSTRUCTURED PROTEINS; FORCE-FIELD; RECOGNITION; SOLVATION; MECHANISM; ENERGY;
D O I
10.1021/ja809547p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Intrinsically disordered proteins (IDPs) are functional proteins where a lack of stable tertiary structures is required for function. Many of the IDPs involved in cellular regulation and signaling have substantial residual structures in the unbound state and fold into stable structures upon binding to their biological partners. Specific roles of these residual structures in and the underlying mechanisms of coupled binding and folding are poorly understood. Here we use physics-based atomistic simulations to compute the multidimensional free energy surfaces of coupled folding and binding of the intrinsically disordered p53 extreme C-terminus to protein S100B(beta beta). The results show that, even though the unbound p53 peptide appears to sample several alternative folded states previously observed when in complex with various targets, it binds to S100B(beta beta) through formation of nonspecific complexes, i.e., a "fly-casting"-like process. The current work, together with previous NMR and coarse-grained modeling studies of another prototypical system, suggests that the main rote of the residual structures in the unbound states of regulatory IDPs might be to provide thermodynamic control of binding through modulating the entropic cost of folding and not to enhance the binding rate by acting as initial contact sites.
引用
收藏
页码:2088 / +
页数:3
相关论文
共 19 条
[1]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[2]   Balancing solvation and intramolecular interactions: Toward a consistent generalized born force field [J].
Chen, JH ;
Im, WP ;
Brooks, CL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (11) :3728-3736
[3]   Recent advances in implicit solvent-based methods for biomolecular simulations [J].
Chen, Jianhan ;
Brooks, Charles L., III ;
Khandogin, Jana .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (02) :140-148
[4]   Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions [J].
Chen, Jianhan ;
Brooks, Charles L., III .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (04) :471-481
[5]   Intrinsic disorder and protein function [J].
Dunker, AK ;
Brown, CJ ;
Lawson, JD ;
Iakoucheva, LM ;
Obradovic, Z .
BIOCHEMISTRY, 2002, 41 (21) :6573-6582
[6]   Intrinsically unstructured proteins and their functions [J].
Dyson, HJ ;
Wright, PE .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (03) :197-208
[7]   MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology [J].
Feig, M ;
Karanicolas, J ;
Brooks, CL .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2004, 22 (05) :377-395
[8]   Preformed structural elements feature in partner recognition by intrinsically unstructured proteins [J].
Fuxreiter, M ;
Simon, I ;
Friedrich, P ;
Tompa, P .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 338 (05) :1015-1026
[9]   A Kirkwood-Buff derived force field for amides [J].
Kang, Myungshim ;
Smith, Paul E. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (13) :1477-1485
[10]   THE WEIGHTED HISTOGRAM ANALYSIS METHOD FOR FREE-ENERGY CALCULATIONS ON BIOMOLECULES .1. THE METHOD [J].
KUMAR, S ;
BOUZIDA, D ;
SWENDSEN, RH ;
KOLLMAN, PA ;
ROSENBERG, JM .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1992, 13 (08) :1011-1021