Multifractal analysis of Hong Kong air quality data

被引:4
作者
Anh, VV
Lam, KC
Leung, Y
Tieng, QM
机构
[1] Queensland Univ Technol, Sch Math Sci, Ctr Stat Sci & Ind Math, Brisbane, Qld 4001, Australia
[2] Chinese Univ Hong Kong, Dept Geog, Shatin, Hong Kong, Peoples R China
关键词
air quality data; multifractal model; pollution prediction;
D O I
10.1002/(SICI)1099-095X(200003/04)11:2<139::AID-ENV393>3.0.CO;2-T
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper describes a multifractal model for representing the high events (intermittency) of air pollution. This model building is the first step toward the development of a cointegration model for prediction of pollution episodes. The method is applied to the time series of two pollutants (NO and SO2) at three locations of the Hong Kong airshed. Copyright (C) 2000 John Wiley & Sons, Ltd.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 13 条
[1]   Modeling anthropogenic trends in air quality data [J].
Anh, V ;
Duc, H ;
Azzi, M .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1997, 47 (01) :66-71
[2]  
ANH VV, 1997, AIR POLLUTION, V5, P443
[3]  
ANH VV, 1999, J STAT PLANNING INFE, V80
[4]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[5]   A COMPARISON OF INTERMITTENCY MODELS IN TURBULENCE [J].
BORGAS, MS .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (09) :2055-2061
[6]   SIMPLE DYNAMICAL MODEL OF INTERMITTENT FULLY DEVELOPED TURBULENCE [J].
FRISCH, U ;
SULEM, PL ;
NELKIN, M .
JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) :719-736
[7]   THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS [J].
HENTSCHEL, HGE ;
PROCACCIA, I .
PHYSICA D, 1983, 8 (03) :435-444
[8]  
KAHANE JP, 1991, FRACTAL GEOMETRY ANA, P277
[9]   INTERMITTENT TURBULENCE IN SELF-SIMILAR CASCADES - DIVERGENCE OF HIGH MOMENTS AND DIMENSION OF CARRIER [J].
MANDELBROT, BB .
JOURNAL OF FLUID MECHANICS, 1974, 62 (JAN23) :331-358
[10]   BOUNDED CASCADE MODELS AS NONSTATIONARY MULTIFRACTALS [J].
MARSHAK, A ;
DAVIS, A ;
CAHALAN, R ;
WISCOMBE, W .
PHYSICAL REVIEW E, 1994, 49 (01) :55-69