Markov chain marginal bootstrap

被引:81
作者
He, XM [1 ]
Hu, FF
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Univ Virginia, Dept Stat, Charlottesville, VA 22904 USA
关键词
asymptotic normality; confidence interval; generalized linear model; M estimator; maximum likelihood; regression;
D O I
10.1198/016214502388618591
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain marginal bootstrap (MCMB) is a new method for constructing confidence intervals or regions for maximum likelihood estimators of certain parametric models and for a wide class of M estimators of linear regression. The MCMB method distinguishes itself from the usual bootstrap methods in two important aspects: it involves solving only one-dimensional equations for parameters of any dimension and produces a Markov chain rather than a (conditionally) independent sequence. It is designed to alleviate computational burdens often associated with bootstrap in high-dimensional problems. The validity of MCMB is established through asymptotic analyses and illustrated with empirical and simulation studies for linear regression and generalized linear models.
引用
收藏
页码:783 / 795
页数:13
相关论文
共 29 条
[1]  
BAI ZD, 1992, STAT SINICA, V2, P237
[2]  
Bai ZD, 1999, ANN STAT, V27, P1616
[3]  
Chung KL., 1974, COURSE PROBABILITY T
[4]  
DICICCIO TJ, 1988, J ROY STAT SOC B MET, V50, P338
[5]  
DiCiccio TJ, 1996, STAT SCI, V11, P189
[6]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[7]  
Efron B., 1993, INTRO BOOTSTRAP, DOI 10.1007/978-1-4899-4541-9
[8]   BOOTSTRAPPING REGRESSION-MODELS [J].
FREEDMAN, DA .
ANNALS OF STATISTICS, 1981, 9 (06) :1218-1228
[9]  
GODAMBE VP, 1991, ESTIMATING FUNCTIONS, P3
[10]  
Gutenbrunner C., 1993, J NONPARAMETR STAT, V2, P307, DOI [DOI 10.1080/10485259308832561, 10.1080/10485259308832561]