Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor

被引:57
作者
Zdanowski, Konrad
Doughty, Phillip
Jakimowicz, Piotr
O'Hara, Liisa
Buttner, Mark J.
Paget, Mark S. B.
Kleanthous, Colin
机构
[1] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
[2] Univ Sussex, Sch Life Sci, Dept Biochem, Brighton BN1 9QG, E Sussex, England
[3] John Innes Ctr Plant Sci Res, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
D O I
10.1021/bi060711v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ZAS proteins are widespread bacterial zinc-containing anti-sigma factors that regulate the activity of sigma factors in response to diverse cues. One of the best characterized ZAS proteins is RsrA from Streptomyces coelicolor, which responds to disulfide stress. Zn-RsrA binds and represses the transcriptional activity of sigma(R) in the reducing environment of the cytoplasm but undergoes reversible, intramolecular disulfide bond formation during oxidative stress. This expels the single metal ion and causes dramatic structural changes in RsrA that result in its dissociation from sigma(R), leaving the sigma factor free to activate the transcription of antioxidant genes. We showed recently that Zn2+ serves a critical role in modulating the redox activity of RsrA thiols but uncertainty remains as to how the metal ion is coordinated in RsrA and related ZAS proteins. Using a combination of random and site-specific mutagenesis with zinc K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we have assigned unambiguously the metal ligands in RsrA, thereby distinguishing between the different ligation models that have been proposed. The data show that the zinc site in RsrA is comprised of Cys11, His37, Cys41, and Cys44. Three of these residues are part of a conserved ZAS-specific sequence motif ( H(37)xxxC(41)xxC(44)), with the fourth ligand, Cys11, found in a subset of ZAS proteins. Cys11 and Cys44 form the trigger disulfide in RsrA, explaining why the metal ion is expelled during oxidation. We discuss these data in the context of redox sensing by RsrA and the sensory mechanisms of other ZAS proteins.
引用
收藏
页码:8294 / 8300
页数:7
相关论文
共 35 条
[1]   A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis [J].
Anthony, JR ;
Warczak, KL ;
Donohue, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (18) :6502-6507
[2]   Bridge over troubled waters:: Sensing stress by disulfide bond formation [J].
Åslund, F ;
Beckwith, J .
CELL, 1999, 96 (06) :751-753
[3]   Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor:: Zinc release and disulfide bond formation [J].
Bae, JB ;
Park, JH ;
Hahn, MY ;
Kim, MS ;
Roe, JH .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 335 (02) :425-435
[4]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49
[5]  
Binsted N, 1998, EXCURV98
[6]   Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons [J].
Cao, M ;
Wang, T ;
Ye, R ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 2002, 45 (05) :1267-1276
[7]   Structural basis of the redox switch in the OxyR transcription factor [J].
Choi, HJ ;
Kim, SJ ;
Mukhopadhyay, P ;
Cho, S ;
Woo, JR ;
Storz, G ;
Ryu, SE .
CELL, 2001, 105 (01) :103-113
[8]   The limitations of X-ray absorption spectroscopy for determining the structure of zinc sites in proteins. When is a tetrathiolate not a tetrathiolate? [J].
Clark-Baldwin, K ;
Tierney, DL ;
Govindaswamy, N ;
Gruff, ES ;
Kim, C ;
Berg, J ;
Koch, SA ;
Penner-Hahn, JE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (33) :8401-8409
[9]  
ELLIS P, 1995, THESIS U SYDNEY NSW
[10]   Modification of a PCR-based site-directed mutagenesis method [J].
Fisher, CL ;
Pei, GK .
BIOTECHNIQUES, 1997, 23 (04) :570-&