Thermodynamic, kinetic, and structural basis for recognition and repair of 8-oxoguanine in DNA by Fpg protein from Escherichia coli

被引:44
作者
Ishchenko, AA
Vasilenko, NL
Sinitsina, OI
Yamkovoy, VI
Fedorova, OS
Douglas, KT
Nevinsky, GA [1 ]
机构
[1] Univ Manchester, Sch Pharm & Pharmaceut Sci, Manchester M13 9PL, Lancs, England
[2] Russian Acad Sci, Siberian Div, Novosibirsk Bioorgan Chem Inst, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Siberian Div, Inst Cytol & Genet, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
D O I
10.1021/bi0121297
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
X-ray analysis does not provide quantitative estimates of the relative importance of the molecular contacts it reveals or of the relative contributions of specific and nonspecific interactions to the total affinity of specific DNA to enzymes. Stepwise increase of DNA ligand complexity has been used to estimate the relative contributions of virtually every nucleotide unit of 8-oxoguanine-containing DNA to its total affinity for Escherichia coli 8-oxoguanine DNA glycosylase (Fpg protein). Fpg protein can interact with up to 13 nucleotide units or base pairs of single- and double-stranded ribo- and deoxyribo-oligonucleotides of different lengths and sequences through weak additive contacts with their internucleotide phosphate groups. Bindings of both single-stranded and double-stranded oligonucleotides follow similar algorithms, with additive contributions to the free energy of binding of the structural components (phosphate, sugar, and base). Thermodynamic models are provided for both specific and nonspecific DNA sequences with Fpg protein. Fpg protein interacts nonspecifically with virtually all of the base-pair units within its DNA-binding cleft: this provides similar to7 orders of magnitude of affinity (DeltaGdegrees approximate to -9.8 kcal/mol) for DNA. In contrast, the relative contribution of the 8-oxoguanine unit of the substrate (DeltaGdegrees approximate to -0.90 kcal/mol) together with other specific interactions is <2 orders of magnitude (DeltaGdegrees approximate to -2.8 kcal/mol). Michaelis complex formation of Fpg protein with DNA containing 8-oxoguanine cannot of itself provide the major part of the enzyme specificity, which lies in the k(cat) term; the rate is increased by 6-8 orders of magnitude on going from nonspecific to specific oligodeoxynucleotides.
引用
收藏
页码:7540 / 7548
页数:9
相关论文
共 46 条
[1]   OXIDATIVE DAMAGE TO DNA - RELATION TO SPECIES METABOLIC-RATE AND LIFE-SPAN [J].
ADELMAN, R ;
SAUL, RL ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (08) :2706-2708
[2]   DIETARY CARCINOGENS AND ANTICARCINOGENS - OXYGEN RADICALS AND DEGENERATIVE DISEASES [J].
AMES, BN .
SCIENCE, 1983, 221 (4617) :1256-1264
[3]   ENDOGENOUS OXIDATIVE DNA DAMAGE, AGING, AND CANCER [J].
AMES, BN .
FREE RADICAL RESEARCH COMMUNICATIONS, 1989, 7 (3-6) :121-128
[4]   MECHANISM OF DNA STRAND NICKING AT APURINIC APYRIMIDINIC SITES BY ESCHERICHIA-COLI [FORMAMIDOPYRIMIDINE]DNA GLYCOSYLASE [J].
BAILLY, V ;
VERLY, WG ;
OCONNOR, T ;
LAVAL, J .
BIOCHEMICAL JOURNAL, 1989, 262 (02) :581-589
[5]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[6]   AN IMPROVED METHOD FOR THE PREPARATION OF THE PHOSPHORAMIDITES OF MODIFIED 2'-DEOXYNUCLEOTIDES - INCORPORATION OF 8-OXO-2'-DEOXY-7H-GUANOSINE INTO SYNTHETIC OLIGOMERS [J].
BODEPUDI, V ;
IDEN, CR ;
JOHNSON, F .
NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS, 1991, 10 (04) :755-761
[7]   SUBSTRATE-SPECIFICITY OF THE ESCHERICHIA-COLI FPG PROTEIN (FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE) - EXCISION OF PURINE LESIONS IN DNA PRODUCED BY IONIZING-RADIATION OR PHOTOSENSITIZATION [J].
BOITEUX, S ;
GAJEWSKI, E ;
LAVAL, J ;
DIZDAROGLU, M .
BIOCHEMISTRY, 1992, 31 (01) :106-110
[8]   IMIDAZOLE OPEN RING 7-METHYLGUANINE - AN INHIBITOR OF DNA-SYNTHESIS [J].
BOITEUX, S ;
LAVAL, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1983, 110 (02) :552-558
[9]   PREDICTING DNA DUPLEX STABILITY FROM THE BASE SEQUENCE [J].
BRESLAUER, KJ ;
FRANK, R ;
BLOCKER, H ;
MARKY, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3746-3750
[10]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866