Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells

被引:115
作者
Pool-Zobel, BL
Bub, A
Schröder, N
Rechkemmer, G
机构
[1] Univ Jena, Inst Nutr, Dept Nutr Toxicol, D-07743 Jena, Germany
[2] Inst Nutr Physiol, Fed Res Ctr Nutr, D-76131 Karlsruhe, Germany
[3] Dr Rainer Wild Stiftung, D-69118 Heidelberg, Germany
关键词
anthocyanidins; anthocyanins; comet assay; antioxidative potential; oxidized DNA-bases;
D O I
10.1007/s003940050065
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Anthocyanins are common colored plant flavonoids, occurring as glycosides of the respective anthocyanidin-chromophores. Like other flavonoids, anthocyanidins are also expected to have antioxidative and antimutagenic properties in vivo. although only few data are available. To gain more knowledge on possible protective mechanisms in mammalian cells, we have compared their extracellular and intracellular antioxidative potential in vitro and in human colon tumor cells. We used Aronia melanocarpa Elliot anthocyanin (AA) concentrates, fractions thereof, concentrates from Elderberry, Macqui, and Tintorera fruits, as well as pure compounds. In vitro, antioxidative properties of the samples were studied with the ferric reducing ability assay (FRA assay). As a measure of intracellular oxidative/antioxidative effects, H2O2-induced strand breaks as well as oxidized DNA bases were determined in human tumor HT29 clone 19A cells using a microgelelectrophoresis assay (comet test). Major results were that isolated compounds (aglycons and glycosides) and complex plant samples are powerful antioxidants in vitro. In fact their activities by far exceeded those of Trolox and vitamin C in the FRA assay. Also, H2O2-induced DNA strand breaks were reduced in cells treated with the complex plant extracts. In contrast, endogenous generation of oxidized DNA bases was not prevented. In summary, the intracellular steady state of oxidized DNA bases is not altered by anthocyanins or anthocyanidins. This finding raises questions with respect to the cancer preventive potential of anthocyanidins within specific tissues, such as the colon. Extracellularly, however, the compounds are potent antioxidants. This points to their potential for providing systemic protection in vivo, e.g., by scavenging oxidants in the blood stream and in the colon. Notably, both aglycons and glycosides have equally strong antioxidant activity.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 33 条
[1]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[2]  
[Anonymous], 1997, FOOD NUTR PREV CANC
[3]  
AUGERON C, 1984, CANCER RES, V44, P3961
[4]   Absorption and excretion of conjugated flavonols, including quercetin-4′-O-β-glucoside and isorhamnetin-4′-O-β-glucoside by human volunteers after the consumption of onions [J].
Aziz, AA ;
Edwards, CA ;
Lean, MEJ ;
Crozier, A .
FREE RADICAL RESEARCH, 1998, 29 (03) :257-269
[5]   The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP assay [J].
Benzie, IFF ;
Strain, JJ .
ANALYTICAL BIOCHEMISTRY, 1996, 239 (01) :70-76
[6]   PROOXIDANT STATES AND TUMOR PROMOTION [J].
CERUTTI, PA .
SCIENCE, 1985, 227 (4685) :375-381
[7]   DIRECT ENZYMATIC DETECTION OF ENDOGENOUS OXIDATIVE BASE DAMAGE IN HUMAN LYMPHOCYTE DNA [J].
COLLINS, AR ;
DUTHIE, SJ ;
DOBSON, VL .
CARCINOGENESIS, 1993, 14 (09) :1733-1735
[8]   THE KINETICS OF REPAIR OF OXIDATIVE DNA-DAMAGE (STRAND BREAKS AND OXIDIZED PYRIMIDINES) IN HUMAN-CELLS [J].
COLLINS, AR ;
MA, AG ;
DUTHIE, SJ .
MUTATION RESEARCH-DNA REPAIR, 1995, 336 (01) :69-77
[9]   Oxidative damage to DNA: Do we have a reliable biomarker? [J].
Collins, AR ;
Dusinska, M ;
Gedik, CM ;
Stetina, R .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1996, 104 :465-469
[10]   Role of oxygen free radicals in cancer development [J].
Dreher, D ;
Junod, AF .
EUROPEAN JOURNAL OF CANCER, 1996, 32A (01) :30-38