Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules

被引:452
作者
Kapanidis, AN
Lee, NK
Laurence, TA
Doose, S
Margeat, E
Weiss, S
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA
关键词
single-molecule fluorescence spectroscopy; forster resonance energy transfer; biomolecular interactions; catabolite activator protein; protein-DNA interactions;
D O I
10.1073/pnas.0401690101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use alternating-laser excitation to achieve fluorescence-aided molecule sorting (FAMS) and enable simultaneous analysis of bionnolecular structure and interactions at the level of single molecules. This was performed by labeling biomolecules with fluorophores that serve as donor-acceptor pairs for Forster resonance energy transfer, and by using alternating-laser excitation to excite directly both donors and acceptors present in single diffusing molecules. Emissions were reduced to the distance-dependent ratio E, and a distance-independent, stoichiometry-based ratio S. Histograms of E and S sorted species based on the conformation and association status of each species. S was sensitive to the stoichiometry and relative brightness of fluorophores in single molecules, observables that can monitor oligomerization and local-environment changes, respectively. FAMS permits equilibrium and kinetic analysis of macromolecule-ligand interactions; this was validated by measuring equilibrium and kinetic dissociation constants for the interaction of Escherichia coli catabolite activator protein with DNA. FAMS is a general platform for ratiometric measurements that report on structure, dynamics, stoichiometries, environment, and interactions of diffusing or immobilized molecules, thus enabling detailed mechanistic studies and ultrasensitive diagnostics.
引用
收藏
页码:8936 / 8941
页数:6
相关论文
共 23 条
[1]   Transcription activation by catabolite activator protein (CAP) [J].
Busby, S ;
Ebright, RH .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (02) :199-213
[2]  
CLEGG RM, 1992, METHOD ENZYMOL, V211, P353
[3]   Ratiometric measurement and identification of single diffusing molecules [J].
Dahan, M ;
Deniz, AA ;
Ha, TJ ;
Chemla, DS ;
Schultz, PG ;
Weiss, S .
CHEMICAL PHYSICS, 1999, 247 (01) :85-106
[4]   Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Forster distance dependence and subpopulations [J].
Deniz, AA ;
Dahan, M ;
Grunwell, JR ;
Ha, TJ ;
Faulhaber, AE ;
Chemla, DS ;
Weiss, S ;
Schultz, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3670-3675
[5]   Concerted binding and bending of DNA by Eschericia coli integration host factor [J].
Dhavan, GM ;
Crothers, DM ;
Chance, MR ;
Brenowitz, M .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (05) :1027-1037
[6]   CONSENSUS DNA SITE FOR THE ESCHERICHIA-COLI CATABOLITE GENE ACTIVATOR PROTEIN (CAP) - CAP EXHIBITS A 450-FOLD HIGHER AFFINITY FOR THE CONSENSUS DNA SITE THAN FOR THE ESCHERICHIA-COLI LAC DNA SITE [J].
EBRIGHT, RH ;
EBRIGHT, YW ;
GUNASEKERA, A .
NUCLEIC ACIDS RESEARCH, 1989, 17 (24) :10295-10305
[7]   SORTING SINGLE MOLECULES - APPLICATION TO DIAGNOSTICS AND EVOLUTIONARY BIOTECHNOLOGY [J].
EIGEN, M ;
RIGLER, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :5740-5747
[8]   KINETICS AND MECHANISM IN THE REACTION OF GENE REGULATORY PROTEINS WITH DNA [J].
FRIED, MG ;
CROTHERS, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 172 (03) :263-282
[9]  
Gutfreund H, 1995, KINETICS LIFE SCI
[10]   Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor [J].
Ha, T ;
Enderle, T ;
Ogletree, DF ;
Chemla, DS ;
Selvin, PR ;
Weiss, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (13) :6264-6268