Parametric correlations of scattering phase shifts and fluctuations of delay times in few-channel chaotic scattering

被引:60
作者
Fyodorov, YV
Sommers, HJ
机构
[1] Fachbereich Physik, Universität-Gesamthochschule Essen, Essen
关键词
D O I
10.1103/PhysRevLett.76.4709
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using a supersymmetric method we derive an explicit expression for the parametric correlation function of densities of eigenphases theta(a) of the S matrix in a chaotic quantum system with broken time-reversal symmetry coupled to the continuum via M equivalent open channels; a = 1,...,M. We use it to find the distribution of derivatives of these eigenphases over the energy (''phase-shift times'') as well as over an arbitrary external parameter. We also find the parametric correlations of Wigner-Smith delay times.
引用
收藏
页码:4709 / 4712
页数:4
相关论文
共 43 条
  • [1] RELATION BETWEEN PERSISTENT CURRENTS AND THE SCATTERING MATRIX
    AKKERMANS, E
    AUERBACH, A
    AVRON, JE
    SHAPIRO, B
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (01) : 76 - 79
  • [2] GAUSSIAN ORTHOGONAL ENSEMBLE STATISTICS IN A MICROWAVE STADIUM BILLIARD WITH CHAOTIC DYNAMICS - PORTER-THOMAS DISTRIBUTION AND ALGEBRAIC DECAY OF TIME CORRELATIONS
    ALT, H
    GRAF, HD
    HARNEY, HL
    HOFFERBERT, R
    LENGELER, H
    RICHTER, A
    SCHARDT, P
    WEIDENMULLER, HA
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (01) : 62 - 65
  • [3] Altshuler B. L., 1995, MESOSCOPIC QUANTUM P
  • [4] ANDREEV AV, CONDMAT9601001
  • [5] [Anonymous], CHAOS QUANTUM PHYS
  • [6] RANDOM-MATRIX DESCRIPTION OF CHAOTIC SCATTERING - SEMICLASSICAL APPROACH
    BLUMEL, R
    SMILANSKY, U
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (03) : 241 - 244
  • [7] CHAOTIC DYNAMICS AND THE GOE-GUE TRANSITION
    BOHIGAS, O
    GIANNONI, MJ
    DEALMEIDA, AMO
    SCHMIT, C
    [J]. NONLINEARITY, 1995, 8 (02) : 203 - 221
  • [8] BROUWER PW, 1995, PHYS REV B, V51, P16875
  • [9] BRUUS H, CONDMAT9510118
  • [10] SEMICLASSICAL QUANTIZATION OF CHAOTIC BILLIARDS - A SCATTERING-THEORY APPROACH
    DORON, E
    SMILANSKY, U
    [J]. NONLINEARITY, 1992, 5 (05) : 1055 - 1084