The spheroidal fixed-free two-boundary-value problem for geoid determination (the spheroidal Bruns' transform)

被引:18
作者
Grafarend, EW
Ardalan, A
Sideris, MG
机构
[1] Univ Stuttgart, Dept Geodesy & Geo Informat, D-7000 Stuttgart, Germany
[2] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada
关键词
two-boundary value problem; spheroidal boundary value problem; spheroidal Stokes' operator; spheroidal Bruns' formula; geoid determination;
D O I
10.1007/s001900050263
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The target of the spheroidal Gauss-Listing geoid determination is presented as a solution of the spheroidal fixed-free two-boundary value problem based on a spheroidal Bruns' transformation ("spheroidal Bruns' formula"). The nonlinear spheroidal Bruns' transform (nonlinear spheroidal Bruns' formula)? the spheroidal fixed part and the spheroidal free part of the two-boundary value problem are derived. Four different spheroidal gravity models are treated, in particular to determine whether they pass the test to fit to the postulate of a level ellipsoidal gravity field, namely of Somigliana-Pizzetti type.
引用
收藏
页码:513 / 533
页数:21
相关论文
共 93 条
[1]   Gravity-field improvement in the Mediterranean Sea by estimating the bottom topography using collocation [J].
Arabelos, D ;
Tziavos, IN .
JOURNAL OF GEODESY, 1998, 72 (03) :136-143
[2]  
BODE A, 1981, MANUSCR GEODAET, V6, P33
[3]  
BODE A, 1982, B GEODESIA SCI AFFIN, V41, P21
[4]  
BRUNS EH, 1878, PUBL KONIGL PREUSS G
[5]  
CHAROEN WC, 1982, 336 OH STAT U DEP GE
[6]  
Eitschberger B., 1974, Bulletin Geodesique, P364, DOI 10.1007/BF02522149
[7]   The oblique Mercator projection of the ellipsoid of revolution E(a,b)(2) [J].
Engels, J ;
Grafarend, E .
JOURNAL OF GEODESY, 1995, 70 (1-2) :38-50
[8]   The gravitational field of topographic isostatic masses and the hypothesis of mass condensation .2. The topographic isostatic geoid [J].
Engels, J ;
Grafarend, EW ;
Sorcik, P .
SURVEYS IN GEOPHYSICS, 1996, 17 (01) :41-66
[9]  
ENGELS J, 1995, GRAVITATIONAL FIELD
[10]   A Meissl-modified Vanicek and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations [J].
Featherstone, WE ;
Evans, JD ;
Olliver, JG .
JOURNAL OF GEODESY, 1998, 72 (03) :154-160