The metropolis algorithm

被引:93
作者
Beichl, I [1 ]
Sullivan, F
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[2] IDA, Ctr Comp Sci, Bowie, MD 20715 USA
关键词
D O I
10.1109/5992.814660
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Metropolis Algorithm has been the most successful and influential of all the members of the computational species that used to be called the "Monte Carlo Method." Today, topics related to this algorithm constitute an entire field of computational science supported by a deep theory and having applications ranging from physical simulations to the foundations of computational complexity.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 7 条
[1]   (Monte Carlo) time after time [J].
Beichl, I ;
Sullivan, F .
IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1997, 4 (03) :91-94
[2]   Approximating the permanent via importance sampling with application to the dimer covering problem [J].
Beichl, I ;
Sullivan, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (01) :128-147
[3]  
GORE V, 1997, P 29 ACM S THEOR COM, P157
[4]  
Jerrum M., 1996, Approximation Algorithms for NP-Hard Problems, chapter The Markov Chain Monte Carlo Method: An Approach To Approximate Counting And Integration, P482
[5]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[6]  
Propp JG, 1996, RANDOM STRUCT ALGOR, V9, P223, DOI 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO
[7]  
2-O