Convergence results in a well-known delayed predator-prey system

被引:117
作者
Beretta, E [1 ]
Kuang, Y [1 ]
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
基金
美国国家科学基金会;
关键词
D O I
10.1006/jmaa.1996.0471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a detailed and explicit procedure of obtaining some regions of attraction for the positive steady state (assumed to exist) of a well known Lotka-Volterra type predator-prey system with a single discrete delay. Our procedure requires the delay length to be small. A detailed example is presented. The method used here is to construct a proper Liapunov functional in a restricted region. (C) 1996 Academic Press, Inc.
引用
收藏
页码:840 / 853
页数:14
相关论文
共 11 条
[1]  
BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
[2]  
BERETTA E, 1994, NONLINEAR WORLD, V1, P291
[3]  
Beretta E., 1994, Differential Equations and Dynamical Systems, V2, P263
[4]  
Edoardo B., 1994, Differential Equations and Dynamical Systems, V2, P19
[5]   GLOBAL STABILITY FOR INFINITE DELAY LOTKA-VOLTERRA TYPE SYSTEMS [J].
KUANG, Y ;
SMITH, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :221-246
[6]   GLOBAL STABILITY IN DELAY-DIFFERENTIAL SYSTEMS WITHOUT DOMINATING INSTANTANEOUS NEGATIVE FEEDBACKS [J].
KUANG, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (02) :503-532
[7]  
Kuang Y, 1993, Mathematics in Science and Engineering
[8]  
May R. M., 1974, Stability and Complexity in Model Ecosystems
[9]  
TANG BR, 1994, PERIODIC SOLUTIONS K
[10]  
WALTMAN P, 1986, 2 COURSE ELEMENTARY