Protein nitration is mediated by heme and free metals through Fenton-type chemistry:: An alternative to the NO/O2- reaction

被引:161
作者
Thomas, DD
Espey, MG
Vitek, MP
Miranda, KM
Wink, DA
机构
[1] NCI, Tumor Biol Sect, Radiat Biol Branch, NIH, Bethesda, MD 20892 USA
[2] Duke Univ, Med Ctr, Div Neurol, Durham, NC 27710 USA
关键词
nitrotyrosine; nitric oxide; peroxynitrite; oxidation; hemin;
D O I
10.1073/pnas.202312699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chemical origins of nitrated tyrosine residues (NT) formed in proteins during a variety of pathophysiological conditions remain controversial. Although numerous studies have concluded that NT is a signature for peroxynitrite (ONOO-) formation, other works suggest the primary involvement of peroxidases. Because metal homeostasis is often disrupted in conditions bearing NT, the role of metals as catalysts for protein nitration was examined. Cogeneration of nitric oxide (NO) and superoxide (O-2(-)), from spermine/NO (2.7 muM/min) and xanthine oxidase (1-28 muM O-2(-)/min), respectively, resulted in protein nitration only when these species were produced at approximately equivalent rates. Addition of ferriprotoporphyrin IX (hemin) to this system increased nitration over a broad range of O-2(-) concentrations with respect to NO. Nitration in the presence of superoxide dismutase but not catalase suggested that ONOO- might not be obligatory to this process. Hemin-mediated NT formation required only the presence of NO2- and H2O2, which are stable end-products of NO and O-2(-) degradation. Ferrous, ferric, and cupric ions were also effective catalysts, indicating that nitration is mediated by species capable of Fenton-type chemistry. Although ONOO- can nitrate proteins, there are severe spatial and temporal constraints on this reaction. In contrast, accumulation of metals and NO2- subsequent to NO synthase activity can result in far less discriminate nitration in the presence of an H2O2 source. Metal catalyzed nitration may account for the observed specificity of protein nitration seen under pathological conditions, suggesting a major role for translocated metals and the labilization of heme in NT formation.
引用
收藏
页码:12691 / 12696
页数:6
相关论文
共 58 条
[1]  
[Anonymous], [No title captured]
[2]   Proteomic method identifies proteins nitrated in vivo during inflammatory challenge [J].
Aulak, KS ;
Miyagi, M ;
Yan, L ;
West, KA ;
Massillon, D ;
Crabb, JW ;
Stuehr, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12056-12061
[3]  
BECKMAN J.S., 1996, METHODS NITRIC OXIDE, P61
[4]   Oxidative damage and tyrosine nitration from peroxynitrite [J].
Beckman, JS .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (05) :836-844
[5]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[6]  
BECKMAN JS, 1994, METHOD ENZYMOL, V233, P229
[7]   A tale of two controversies -: Defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species [J].
Brennan, ML ;
Wu, WJ ;
Fu, XM ;
Shen, ZZ ;
Song, W ;
Frost, H ;
Vadseth, C ;
Narine, L ;
Lenkiewicz, E ;
Borchers, MT ;
Lusis, AJ ;
Lee, JJ ;
Lee, NA ;
Abu-Soud, HM ;
Ischiropoulos, H ;
Hazen, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (20) :17415-17427
[8]   Mechanisms by which metals promote events connected to neurodegenerative diseases [J].
Campbell, A ;
Smith, MA ;
Sayre, LM ;
Bondy, SC ;
Perry, G .
BRAIN RESEARCH BULLETIN, 2001, 55 (02) :125-132
[9]   THE ROLE OF THE REACTIONS OF (NO)-N-CENTER-DOT WITH SUPEROXIDE AND OXYGEN IN BIOLOGICAL, SYSTEMS - A KINETIC APPROACH [J].
CZAPSKI, G ;
GOLDSTEIN, S .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 19 (06) :785-794
[10]   Blood radicals - Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system [J].
DarleyUsmar, V ;
Halliwell, B .
PHARMACEUTICAL RESEARCH, 1996, 13 (05) :649-662