Anderson transition in three-dimensional disordered systems with symplectic symmetry

被引:50
作者
Kawarabayashi, T
Ohtsuki, T
Slevin, K
Ono, Y
机构
[1] SOPHIA UNIV,DEPT PHYS,CHIYODA KU,TOKYO 102,JAPAN
[2] INST PHYS & CHEM RES,WAKO,SAITAMA 35101,JAPAN
[3] TOHO UNIV,DEPT PHYS,FUNABASHI,CHIBA 274,JAPAN
关键词
D O I
10.1103/PhysRevLett.77.3593
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Anderson transition in a 3D system with symplectic symmetry is investigated numerically. From a one-parameter scaling analysis the critical exponent nu of the localization length is extracted and estimated to be nu 1.3 +/- 0.2. The level statistics at the critical point are also analyzed and shown to be scale independent. The form of the energy level spacing distribution P(s) at the critical point is found to be different from that for the orthogonal ensemble, suggesting that the breaking of spin rotation symmetry is relevant at the critical point.
引用
收藏
页码:3593 / 3596
页数:4
相关论文
共 35 条
[1]  
Al'tshuler B. L., 1988, Soviet Physics - JETP, V67, P625
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]   NUMERICAL STUDY OF SYMMETRY EFFECTS ON LOCALIZATION IN 2 DIMENSIONS [J].
ANDO, T .
PHYSICAL REVIEW B, 1989, 40 (08) :5325-5339
[4]   SPECTRAL CORRELATIONS IN DISORDERED ELECTRONIC SYSTEMS - CROSSOVER FROM METAL TO INSULATOR REGIME [J].
ARONOV, AG ;
KRAVTSOV, VE ;
LERNER, IV .
PHYSICAL REVIEW LETTERS, 1995, 74 (07) :1174-1177
[5]  
ARONOV AG, 1994, JETP LETT+, V59, P39
[6]   3-DIMENSIONAL DISORDERED CONDUCTORS IN A STRONG MAGNETIC-FIELD - SURFACE-STATES AND QUANTUM HALL PLATEAUS [J].
CHALKER, JT ;
DOHMEN, A .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4496-4499
[7]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .4. [J].
DYSON, FJ ;
MEHTA, ML .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (05) :701-&
[8]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P157, DOI 10.1063/1.1703774