The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds

被引:402
作者
Zou, Junhuang
Zhang, Shuying
Zhang, Weiping
Li, Gang
Chen, Zongxiang
Zhai, Wenxue
Zhao, Xianfeng
Pan, Xuebiao
Xie, Qi
Zhu, Lihuang [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Plant Gene Res, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
[3] Yangzhou Univ, Dept Agron, Yangzhou 225009, Peoples R China
[4] Chinese Acad Sci, Grad Sch, Beijing 100101, Peoples R China
关键词
HTD1; MAX3; carotenoid-derived signal; tillering; dwarf; rice;
D O I
10.1111/j.1365-313X.2006.02916.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rice tillering is an important agronomic trait for grain production. The HIGH-TILLERING DWARF1 (HTD1) gene encodes an ortholog of Arabidopsis MAX3. Complementation analyses for HTD1 confirm that the defect in HTD1 is responsible for both high-tillering and dwarf phenotypes in the htd1 mutant. The rescue of the Arabidopsis max3 mutant phenotype by the introduction of Pro(35S):HTD1 indicates HTD1 is a carotenoid cleavage dioxygenase that has the same function as MAX3 in synthesis of a carotenoid-derived signal molecule. The HTD1 gene is expressed in both shoot and root tissues. By evaluating Pro(HTD1):GUS expression, we found that the HTD1 gene is mainly expressed in vascular bundle tissues throughout the plant. Auxin induction of HTD1 expression suggests that auxin may regulate rice tillering partly through upregulation of HTD1 gene transcription. Restoration of dwarf phenotype after the removal of axillary buds indicates that the dwarfism of the htd1 mutant may be a consequence of excessive tiller production. In addition, the expression of HTD1, D3 and OsCCD8a in the htd1 and d3 mutants suggests a feedback mechanism may exist for the synthesis and perception of the carotenoid-derived signal in rice. Characterization of MAX genes in Arabidopsis, and identification of their orthologs in pea, petunia and rice indicates the existence of a conserved mechanism for shoot-branching regulation in both monocots and dicots.
引用
收藏
页码:687 / 696
页数:10
相关论文
共 64 条
[1]  
[Anonymous], 1995, RICE GENET NEWSLETT
[2]   Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene [J].
Bainbridge, K ;
Sorefan, K ;
Ward, S ;
Leyser, O .
PLANT JOURNAL, 2005, 44 (04) :569-580
[3]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[4]   Axillary bud outgrowth: sending a message [J].
Beveridge, CA .
CURRENT OPINION IN PLANT BIOLOGY, 2006, 9 (01) :35-40
[5]   Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness [J].
Beveridge, CA ;
Weller, JL ;
Singer, SR ;
Hofer, JMI .
PLANT PHYSIOLOGY, 2003, 131 (03) :927-934
[6]   The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s) [J].
Beveridge, CA ;
Symons, GM ;
Murfet, IC ;
Ross, JJ ;
Rameau, C .
PLANT PHYSIOLOGY, 1997, 115 (03) :1251-1258
[7]   Branching in pea - Action of genes rms3 and rms4 [J].
Beveridge, CA ;
Ross, JJ ;
Murfet, IC .
PLANT PHYSIOLOGY, 1996, 110 (03) :859-865
[8]   Long-distance signalling and a mutational analysis of branching in pea [J].
Beveridge, CA .
PLANT GROWTH REGULATION, 2000, 32 (2-3) :193-203
[9]   MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone [J].
Booker, J ;
Sieberer, T ;
Wright, W ;
Williamson, L ;
Willett, B ;
Stirnberg, P ;
Turnbull, C ;
Srinivasan, M ;
Goddard, P ;
Leyser, O .
DEVELOPMENTAL CELL, 2005, 8 (03) :443-449
[10]   MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule [J].
Booker, J ;
Auldridge, M ;
Wills, S ;
McCarty, D ;
Klee, H ;
Leyser, O .
CURRENT BIOLOGY, 2004, 14 (14) :1232-1238